Cargando…

Preparation of Aloe-Emodin Microcapsules and Its Effect on Antibacterial and Optical Properties of Water-Based Coating

With the development of science and technology, the function of waterborne coatings has been advanced to a higher standard, which requires researchers to innovate and expand the research on them. Aloe-emodin is a natural material with antibacterial properties. Applying its antibacterial effect to th...

Descripción completa

Detalles Bibliográficos
Autores principales: Huang, Nan, Yan, Xiaoxing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10096789/
https://www.ncbi.nlm.nih.gov/pubmed/37050342
http://dx.doi.org/10.3390/polym15071728
Descripción
Sumario:With the development of science and technology, the function of waterborne coatings has been advanced to a higher standard, which requires researchers to innovate and expand the research on them. Aloe-emodin is a natural material with antibacterial properties. Applying its antibacterial effect to the coating can enrich its function and meet the diversified needs of consumers. In this study, the urea-formaldehyde resin was used as the wall material and the aloe-emodin as the core material to prepare the microcapsules. The coating rate, yield, and morphology of the microcapsules were characterized. Through an orthogonal experiment and a single factor experiment, the optimization scheme of microcapsule preparation was explored. The results indicated that the optimum preparation process of aloe-emodin microcapsules was as follows: the mass ratio of core material to wall material was 1:15, the molar ratio of urea to formaldehyde was 1:1.2, the temperature of microencapsulation was 50 °C, and the stirring speed of microencapsulation was 600 rpm. On this basis, the aloe-emodin microcapsules with 0%, 1.0%, 3.0%, 6.0%, 9.0%, and 12.0% contents were added to the waterborne coating to prepare the paint films, and their influence on the antibacterial and optical properties of the waterborne paint films was explored. The results demonstrated that the aloe-emodin microcapsules had antibacterial activity. When the content was 6.0%, the comprehensive performance of the film was better. The antibacterial rate of the film against Escherichia coli was 68.1%, and against Staphylococcus aureus it was 60.7%. The color difference of the film was 59.93, and the glossiness at 60° was 7.8%. In this study, the microcapsules that can improve the antibacterial performance of water-based coatings were prepared, which can expand the application of water-based coatings and provide a reference for the study of the functionalization of water-based coatings.