Cargando…

Structural Variations in Biobased Polyfurfuryl Alcohol Induced by Polymerization in Water

Poly(furfuryl alcohol) is a thermostable biobased thermoset. The polymerization of furfuryl alcohol (FA) is sensitive to a number of side reactions, mainly the opening of the furan ring into carbonyl species. Such carbonyls can be used to introduce new properties into the PFA materials through deriv...

Descripción completa

Detalles Bibliográficos
Autores principales: Delliere, Pierre, Pizzi, Antonio, Guigo, Nathanael
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10096809/
https://www.ncbi.nlm.nih.gov/pubmed/37050359
http://dx.doi.org/10.3390/polym15071745
Descripción
Sumario:Poly(furfuryl alcohol) is a thermostable biobased thermoset. The polymerization of furfuryl alcohol (FA) is sensitive to a number of side reactions, mainly the opening of the furan ring into carbonyl species. Such carbonyls can be used to introduce new properties into the PFA materials through derivatization. Hence, better understanding of the furan ring opening is required to develop new applications for PFA. This article studies the structural discrepancies between a PFA prepared in neat conditions versus a PFA prepared in aqueous conditions, i.e., with more carbonyls, through NMR and MALDI ToF. Overall, the PFA prepared in water exhibited a structure more heterogeneous than the PFA prepared in neat conditions. The presence of ketonic derivatives such as enols and ketals were highlighted in the case of the aqueous PFA. In this line, the addition of water at the beginning of the polymerization stimulated the production of aldehydes by a factor two. Finally, the PFA prepared in neat conditions showed terminal lactones instead of aldehydes.