Cargando…
Multi-triangles cylindrical origami and inspired metamaterials with tunable stiffness and stretchable robotic arm
Kresling pattern origami-inspired structural design has been widely investigated using its bistable property and the single coupling degree of freedom (DOF). In order to obtain new properties or new origami-inspired structures, it needs to innovate the crease lines in the flat sheet of Kresling patt...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10096905/ https://www.ncbi.nlm.nih.gov/pubmed/37065617 http://dx.doi.org/10.1093/pnasnexus/pgad098 |
Sumario: | Kresling pattern origami-inspired structural design has been widely investigated using its bistable property and the single coupling degree of freedom (DOF). In order to obtain new properties or new origami-inspired structures, it needs to innovate the crease lines in the flat sheet of Kresling pattern origami. Here, we present a derivative of Kresling pattern origami—multi-triangles cylindrical origami (MTCO) with tristable property. The truss model is modified based on the switchable active crease lines during the folding motion of the MTCO. Using the energy landscape obtained from the modified truss model, the tristable property is validated and extended to Kresling pattern origami. Simultaneously, the high stiffness property of the third stable state and some special stable states are discussed. In addition, MTCO-inspired metamaterials with deployable property and tunable stiffness, and MTCO-inspired robotic arms with wide movement ranges and rich motion forms are created. These works promote research on Kresling pattern origami, and the design ideas of the metamaterials and robotic arms play a positive role in improving the stiffness of deployable structures and conceiving motion robots. |
---|