Cargando…
Preliminary Results on Preparation and Performance of a Self-Emulsifying Waterborne Epoxy Curing Agent at Room Temperature
Polyethylene glycol 1000 (PEG1000) and epoxy resin E20 were used to synthesize the E20/PEG1000 polymer (EP1K), which was later transformed into a self-emulsifying water-based epoxy curing agent by reacting with m-Xylylenediamine (MXDA). The effects of molecular weight, the molar ratio of the raw mat...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10097019/ https://www.ncbi.nlm.nih.gov/pubmed/37050287 http://dx.doi.org/10.3390/polym15071673 |
Sumario: | Polyethylene glycol 1000 (PEG1000) and epoxy resin E20 were used to synthesize the E20/PEG1000 polymer (EP1K), which was later transformed into a self-emulsifying water-based epoxy curing agent by reacting with m-Xylylenediamine (MXDA). The effects of molecular weight, the molar ratio of the raw materials, the catalyst dosage, and the different co-solvents on the properties of the prepared curing agent were systematically explored. The infrared absorption spectra of E20, EP1K, and the water-based epoxy curing agent were compared and analyzed. The coating properties of the waterborne epoxy varnish, which was based on water-based epoxy curing agents to emulsify and cure the resin E44, were systematically tested. The results demonstrated that with a molar ratio of 1:1:4 of PEG1000, E20, and MXDA, the boron trifluoride etherate (BF(3)·Et(2)O) as catalyst accounts for 0.3% of the total mass of E20 and PEG1000, and an applicable period of 3 h for the prepared varnish, the anti-corrosion performance, and mechanical properties of the coatings were excellent. |
---|