Cargando…

HMOs Exert Marked Bifidogenic Effects on Children’s Gut Microbiota Ex Vivo, Due to Age-Related Bifidobacterium Species Composition

Prebiotics are substrates that are selectively utilized by host microorganisms, thus conferring a health benefit. There is a growing awareness that interpersonal and age-dependent differences in gut microbiota composition impact prebiotic effects. Due to the interest in using human milk oligosacchar...

Descripción completa

Detalles Bibliográficos
Autores principales: Bajic, Danica, Wiens, Frank, Wintergerst, Eva, Deyaert, Stef, Baudot, Aurélien, Van den Abbeele, Pieter
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10097135/
https://www.ncbi.nlm.nih.gov/pubmed/37049541
http://dx.doi.org/10.3390/nu15071701
Descripción
Sumario:Prebiotics are substrates that are selectively utilized by host microorganisms, thus conferring a health benefit. There is a growing awareness that interpersonal and age-dependent differences in gut microbiota composition impact prebiotic effects. Due to the interest in using human milk oligosaccharides (HMOs) beyond infancy, this study evaluated how HMOs [2’Fucosyllactose (2’FL), Lacto-N-neotetraose (LNnT), 3’Sialyllactose (3’SL), 6’Sialyllactose (6’SL)] and blends thereof affect the microbiota of 6-year-old children (n = 6) and adults (n = 6), compared to prebiotics inulin (IN) and fructooligosaccharides (FOS). The ex vivo SIFR(®) technology was used, given its demonstrated predictivity in clinical findings. First, HMOs and HMO blends seemed to maintain a higher α-diversity compared to FOS/IN. Further, while 2′FL/LNnT were bifidogenic for both age groups, 3′SL/6′SL and FOS/IN were exclusively bifidogenic for children and adults, respectively. This originated from age-related differences in microbiota composition because while 3′SL/6′SL stimulated B. pseudocatenulatum (abundant in children), FOS/IN enhanced B. adolescentis (abundant in adults). Moreover, all treatments significantly increased acetate, propionate and butyrate (only in adults) with product- and age-dependent differences. Among the HMOs, 6′SL specifically stimulated propionate (linked to Bacteroides fragilis in children and Phocaeicola massiliensis in adults), while LNnT stimulated butyrate (linked to Anaerobutyricum hallii in adults). Indole-3-lactic acid and 3-phenyllactic acid (linked to immune health) and gamma-aminobutyric acid (linked to gut-brain axis) were most profoundly stimulated by 2′FL and HMO blends in both children and adults, correlating with specific Bifidobacteriaceae. Finally, 2′FL/LNnT increased melatonin in children, while 3′SL remarkably increased folic acid in adults. Overall, age-dependent differences in microbiota composition greatly impacted prebiotic outcomes, advocating for the development of age-specific nutritional supplements. HMOs were shown to be promising modulators in the adult, and particularly the children’s microbiota. The observed HMO-specific effects, likely originating from their structural heterogeneity, suggest that blends of different HMOs could maximize treatment effects.