Cargando…
Physical, Mechanical, and Structural Properties of the Polylactide and Polybutylene Adipate Terephthalate (PBAT)-Based Biodegradable Polymer during Compost Storage
Today, packaging is an integral part of any food product, preserving its quality and safety. The use of biodegradable packaging as an alternative to conventional polymers reduces the consumption of synthetic polymers and their negative impacts on the environment. The purpose of this study was to ana...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10097148/ https://www.ncbi.nlm.nih.gov/pubmed/37050232 http://dx.doi.org/10.3390/polym15071619 |
Sumario: | Today, packaging is an integral part of any food product, preserving its quality and safety. The use of biodegradable packaging as an alternative to conventional polymers reduces the consumption of synthetic polymers and their negative impacts on the environment. The purpose of this study was to analyze the properties of a biodegradable compound based on polylactide (PLA) and polybutylene adipate terephthalate (PBAT). Test samples were made by blown extrusion. The structural, physical, and mechanical properties of the PLA/PBAT material were studied. The property variations during compost storage in the lab were monitored for 365 days. The physical and mechanical properties were measured in accordance with the GOST 14236-2017 (ISO 527-2:2012) standard. We measured the tensile strength and elongation at rupture. We used attenuated total reflectance Fourier transform infrared microscopy (ATR-FTIR) to analyze the changes in the material structure. This paper presents a comparative analysis of the strengths of a biodegradable material and grade H polyethylene film (manufactured to GOST 10354-82). PLA/PBAT’s longitudinal and transverse tensile strengths are 14.08% and 32.59% lower than those of LDPE, respectively. Nevertheless, the results indicate that, given its physical and mechanical properties, the PLA/PBAT material can be an alternative to conventional PE film food packaging. The structural study results are in good agreement with the physical and mechanical tests. Micrographs clearly show the surface deformations of the biodegradable material. They increase with the compost storage duration. The scanning microscopy (SEM) surface analysis of the original PLA/PBAT films indicated that the PLA structure is similar to that of a multilayer shell or sponge, which is visible at medium and especially high magnification. We conclude that PLA/PBAT-based biodegradable materials are potential substitutes for conventional PE polymer films. |
---|