Cargando…

Cloning, Expression, and Characterization of a Highly Stable Heparinase I from Bacteroides xylanisolvens

Heparinase I (Hep I), which specifically degrades heparin to oligosaccharide or unsaturated disaccharide, has an important role in the production of low molecular weight heparin (LMWH). However, low productivity and stability of heparinase I hinders its applications. Here, a novel heparinase I (BxHe...

Descripción completa

Detalles Bibliográficos
Autores principales: Pei, Jia-Lu, Wei, Wei, Wang, Ding-Ran, Liu, Cai-Yun, Zhou, Hua-Ping, Xu, Chen-Lu, Zhang, Ye-Wang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10097318/
https://www.ncbi.nlm.nih.gov/pubmed/37050390
http://dx.doi.org/10.3390/polym15071776
Descripción
Sumario:Heparinase I (Hep I), which specifically degrades heparin to oligosaccharide or unsaturated disaccharide, has an important role in the production of low molecular weight heparin (LMWH). However, low productivity and stability of heparinase I hinders its applications. Here, a novel heparinase I (BxHep-I) was cloned from Bacteroides xylanisolvens and overexpressed in soluble form in Escherichia coli. The expression conditions of BxHep-I were optimized for an activity of 7144 U/L. BxHep-I had a specific activity of 57.6 U/mg at the optimal temperature and pH of 30 °C and pH 7.5, with the K(m) and V(max) of 0.79 mg/mL and 124.58 U/mg, respectively. BxHep-I catalytic activity could be enhanced by Ca(2+) and Mg(2+), while strongly inhibited by Zn(2+) and Co(2+). Purified BxHep-I displayed an outstanding thermostability with half-lives of 597 and 158 min at 30 and 37 °C, respectively, which are the highest half-lives ever reported for heparinases I. After storage at 4 °C for one week, BxHep-I retained 73% of its initial activity. Molecular docking revealed that the amino acids Asn25, Gln27, Arg88, Lys116, His156, Arg161, Gln228, Tyr356, Lys358, and Tyr362 form 13 hydrogen bonds with the substrate heparin disaccharides in the substrate binding domain and are mainly involved in the substrate binding of BxHep-I. These results suggest that the BxHep-I with high stability could be a candidate catalyst for the industrial production of LMWH.