Cargando…
Cloning, Expression, and Characterization of a Highly Stable Heparinase I from Bacteroides xylanisolvens
Heparinase I (Hep I), which specifically degrades heparin to oligosaccharide or unsaturated disaccharide, has an important role in the production of low molecular weight heparin (LMWH). However, low productivity and stability of heparinase I hinders its applications. Here, a novel heparinase I (BxHe...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10097318/ https://www.ncbi.nlm.nih.gov/pubmed/37050390 http://dx.doi.org/10.3390/polym15071776 |
_version_ | 1785024551902511104 |
---|---|
author | Pei, Jia-Lu Wei, Wei Wang, Ding-Ran Liu, Cai-Yun Zhou, Hua-Ping Xu, Chen-Lu Zhang, Ye-Wang |
author_facet | Pei, Jia-Lu Wei, Wei Wang, Ding-Ran Liu, Cai-Yun Zhou, Hua-Ping Xu, Chen-Lu Zhang, Ye-Wang |
author_sort | Pei, Jia-Lu |
collection | PubMed |
description | Heparinase I (Hep I), which specifically degrades heparin to oligosaccharide or unsaturated disaccharide, has an important role in the production of low molecular weight heparin (LMWH). However, low productivity and stability of heparinase I hinders its applications. Here, a novel heparinase I (BxHep-I) was cloned from Bacteroides xylanisolvens and overexpressed in soluble form in Escherichia coli. The expression conditions of BxHep-I were optimized for an activity of 7144 U/L. BxHep-I had a specific activity of 57.6 U/mg at the optimal temperature and pH of 30 °C and pH 7.5, with the K(m) and V(max) of 0.79 mg/mL and 124.58 U/mg, respectively. BxHep-I catalytic activity could be enhanced by Ca(2+) and Mg(2+), while strongly inhibited by Zn(2+) and Co(2+). Purified BxHep-I displayed an outstanding thermostability with half-lives of 597 and 158 min at 30 and 37 °C, respectively, which are the highest half-lives ever reported for heparinases I. After storage at 4 °C for one week, BxHep-I retained 73% of its initial activity. Molecular docking revealed that the amino acids Asn25, Gln27, Arg88, Lys116, His156, Arg161, Gln228, Tyr356, Lys358, and Tyr362 form 13 hydrogen bonds with the substrate heparin disaccharides in the substrate binding domain and are mainly involved in the substrate binding of BxHep-I. These results suggest that the BxHep-I with high stability could be a candidate catalyst for the industrial production of LMWH. |
format | Online Article Text |
id | pubmed-10097318 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-100973182023-04-13 Cloning, Expression, and Characterization of a Highly Stable Heparinase I from Bacteroides xylanisolvens Pei, Jia-Lu Wei, Wei Wang, Ding-Ran Liu, Cai-Yun Zhou, Hua-Ping Xu, Chen-Lu Zhang, Ye-Wang Polymers (Basel) Article Heparinase I (Hep I), which specifically degrades heparin to oligosaccharide or unsaturated disaccharide, has an important role in the production of low molecular weight heparin (LMWH). However, low productivity and stability of heparinase I hinders its applications. Here, a novel heparinase I (BxHep-I) was cloned from Bacteroides xylanisolvens and overexpressed in soluble form in Escherichia coli. The expression conditions of BxHep-I were optimized for an activity of 7144 U/L. BxHep-I had a specific activity of 57.6 U/mg at the optimal temperature and pH of 30 °C and pH 7.5, with the K(m) and V(max) of 0.79 mg/mL and 124.58 U/mg, respectively. BxHep-I catalytic activity could be enhanced by Ca(2+) and Mg(2+), while strongly inhibited by Zn(2+) and Co(2+). Purified BxHep-I displayed an outstanding thermostability with half-lives of 597 and 158 min at 30 and 37 °C, respectively, which are the highest half-lives ever reported for heparinases I. After storage at 4 °C for one week, BxHep-I retained 73% of its initial activity. Molecular docking revealed that the amino acids Asn25, Gln27, Arg88, Lys116, His156, Arg161, Gln228, Tyr356, Lys358, and Tyr362 form 13 hydrogen bonds with the substrate heparin disaccharides in the substrate binding domain and are mainly involved in the substrate binding of BxHep-I. These results suggest that the BxHep-I with high stability could be a candidate catalyst for the industrial production of LMWH. MDPI 2023-04-03 /pmc/articles/PMC10097318/ /pubmed/37050390 http://dx.doi.org/10.3390/polym15071776 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Pei, Jia-Lu Wei, Wei Wang, Ding-Ran Liu, Cai-Yun Zhou, Hua-Ping Xu, Chen-Lu Zhang, Ye-Wang Cloning, Expression, and Characterization of a Highly Stable Heparinase I from Bacteroides xylanisolvens |
title | Cloning, Expression, and Characterization of a Highly Stable Heparinase I from Bacteroides xylanisolvens |
title_full | Cloning, Expression, and Characterization of a Highly Stable Heparinase I from Bacteroides xylanisolvens |
title_fullStr | Cloning, Expression, and Characterization of a Highly Stable Heparinase I from Bacteroides xylanisolvens |
title_full_unstemmed | Cloning, Expression, and Characterization of a Highly Stable Heparinase I from Bacteroides xylanisolvens |
title_short | Cloning, Expression, and Characterization of a Highly Stable Heparinase I from Bacteroides xylanisolvens |
title_sort | cloning, expression, and characterization of a highly stable heparinase i from bacteroides xylanisolvens |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10097318/ https://www.ncbi.nlm.nih.gov/pubmed/37050390 http://dx.doi.org/10.3390/polym15071776 |
work_keys_str_mv | AT peijialu cloningexpressionandcharacterizationofahighlystableheparinaseifrombacteroidesxylanisolvens AT weiwei cloningexpressionandcharacterizationofahighlystableheparinaseifrombacteroidesxylanisolvens AT wangdingran cloningexpressionandcharacterizationofahighlystableheparinaseifrombacteroidesxylanisolvens AT liucaiyun cloningexpressionandcharacterizationofahighlystableheparinaseifrombacteroidesxylanisolvens AT zhouhuaping cloningexpressionandcharacterizationofahighlystableheparinaseifrombacteroidesxylanisolvens AT xuchenlu cloningexpressionandcharacterizationofahighlystableheparinaseifrombacteroidesxylanisolvens AT zhangyewang cloningexpressionandcharacterizationofahighlystableheparinaseifrombacteroidesxylanisolvens |