Cargando…
Predictive and robust gene selection for spatial transcriptomics
A prominent trend in single-cell transcriptomics is providing spatial context alongside a characterization of each cell’s molecular state. This typically requires targeting an a priori selection of genes, often covering less than 1% of the genome, and a key question is how to optimally determine the...
Autores principales: | Covert, Ian, Gala, Rohan, Wang, Tim, Svoboda, Karel, Sümbül, Uygar, Lee, Su-In |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10097645/ https://www.ncbi.nlm.nih.gov/pubmed/37045821 http://dx.doi.org/10.1038/s41467-023-37392-1 |
Ejemplares similares
-
Joint inference of discrete cell types and continuous type-specific variability in single-cell datasets with MMIDAS
por: Marghi, Yeganeh, et al.
Publicado: (2023) -
Single-cell transcriptomic evidence for dense intracortical neuropeptide networks
por: Smith, Stephen J, et al.
Publicado: (2019) -
ADEPT: Autoencoder with differentially expressed genes and imputation for robust spatial transcriptomics clustering
por: Hu, Yunfei, et al.
Publicado: (2023) -
Gene panel selection for targeted spatial transcriptomics
por: Zhang, Yida, et al.
Publicado: (2023) -
SCING: Inference of robust, interpretable gene regulatory networks from single cell and spatial transcriptomics
por: Littman, Russell, et al.
Publicado: (2023)