Cargando…
Differences in learning characteristics between support vector machine and random forest models for compound classification revealed by Shapley value analysis
The random forest (RF) and support vector machine (SVM) methods are mainstays in molecular machine learning (ML) and compound property prediction. We have explored in detail how binary classification models derived using these algorithms arrive at their predictions. To these ends, approaches from ex...
Autores principales: | Siemers, Friederike Maite, Bajorath, Jürgen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10097675/ https://www.ncbi.nlm.nih.gov/pubmed/37045972 http://dx.doi.org/10.1038/s41598-023-33215-x |
Ejemplares similares
-
Calculation of exact Shapley values for support vector machines with Tanimoto kernel enables model interpretation
por: Feldmann, Christian, et al.
Publicado: (2022) -
Calculation of exact Shapley values for explaining support vector machine models using the radial basis function kernel
por: Mastropietro, Andrea, et al.
Publicado: (2023) -
Explaining Multiclass Compound Activity Predictions Using Counterfactuals and Shapley Values
por: Lamens, Alec, et al.
Publicado: (2023) -
Interpretation of machine learning models using shapley values: application to compound potency and multi-target activity predictions
por: Rodríguez-Pérez, Raquel, et al.
Publicado: (2020) -
Support Vector Machine Classification and Regression
Prioritize Different Structural Features for Binary Compound Activity
and Potency Value Prediction
por: Rodríguez-Pérez, Raquel, et al.
Publicado: (2017)