Cargando…

Nondestructive inspection of surface nanostructuring using label-free optical super-resolution imaging

Ultrafast laser processing can induce surface nanostructurating (SNS) in most materials with dimensions close to the irradiation laser wavelength. In-situ SNS characterization could be key for laser parameter’s fine-tuning, essential for the generation of complex and/or hybrid nanostructures. Laser...

Descripción completa

Detalles Bibliográficos
Autores principales: Aguilar, Alberto, Khalil, Alain Abou, Aldeiturriaga, David Pallares, Sedao, Xxx, Mauclair, Cyril, Bon, Pierre
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10097710/
https://www.ncbi.nlm.nih.gov/pubmed/37045939
http://dx.doi.org/10.1038/s41598-023-32735-w
Descripción
Sumario:Ultrafast laser processing can induce surface nanostructurating (SNS) in most materials with dimensions close to the irradiation laser wavelength. In-situ SNS characterization could be key for laser parameter’s fine-tuning, essential for the generation of complex and/or hybrid nanostructures. Laser Induced Periodic Surface Structures (LIPSS) created in the ultra-violet (UV) range generate the most fascinating effects. They are however highly challenging to characterize in a non-destructive manner since their dimensions can be as small as 100 nm. Conventional optical imaging methods are indeed limited by diffraction to a resolution of [Formula: see text] nm. Although optical super-resolution techniques can go beyond the diffraction limit, which in theory allows the visualization of LIPSS, most super-resolution methods require the presence of small probes (such as fluorophores) which modifies the sample and is usually incompatible with a direct surface inspection. In this paper, we demonstrate that a modified label-free Confocal Reflectance Microscope (CRM) in a photon reassignment regime (also called re-scan microscopy) can detect sub-diffraction limit LIPSS. SNS generated on a titanium sample irradiated with a [Formula: see text] nm femtosecond UV-laser were characterized with nanostructuring period ranging from 105 to 172 nm. Our label-free, non-destructive optical surface inspection was done at 180 [Formula: see text] m[Formula: see text] /s, and the results are compared with commercial SEM showing the metrological efficiency of our approach.