Cargando…
An interpretable and interactive deep learning algorithm for a clinically applicable retinal fundus diagnosis system by modelling finding-disease relationship
The identification of abnormal findings manifested in retinal fundus images and diagnosis of ophthalmic diseases are essential to the management of potentially vision-threatening eye conditions. Recently, deep learning-based computer-aided diagnosis systems (CADs) have demonstrated their potential t...
Autores principales: | Son, Jaemin, Shin, Joo Young, Kong, Seo Taek, Park, Jeonghyuk, Kwon, Gitaek, Kim, Hoon Dong, Park, Kyu Hyung, Jung, Kyu-Hwan, Park, Sang Jun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10097752/ https://www.ncbi.nlm.nih.gov/pubmed/37045856 http://dx.doi.org/10.1038/s41598-023-32518-3 |
Ejemplares similares
-
Predicting High Coronary Artery Calcium Score From Retinal Fundus Images With Deep Learning Algorithms
por: Son, Jaemin, et al.
Publicado: (2020) -
A Novel Fundus Image Reading Tool for Efficient Generation of a Multi-dimensional Categorical Image Database for Machine Learning Algorithm Training
por: Park, Sang Jun, et al.
Publicado: (2018) -
Aggregation of cohorts for histopathological diagnosis with deep morphological analysis
por: Park, Jeonghyuk, et al.
Publicado: (2021) -
Effects of Hypertension, Diabetes, and Smoking on Age and Sex Prediction from Retinal Fundus Images
por: Kim, Yong Dae, et al.
Publicado: (2020) -
Cerebral Angiographic Findings of Cosmetic Facial Filler-related Ophthalmic and Retinal Artery Occlusion
por: Kim, Yong-Kyu, et al.
Publicado: (2015)