Cargando…
Machine learning for optimized individual survival prediction in resectable upper gastrointestinal cancer
PURPOSE: Surgical oncologists are frequently confronted with the question of expected long-term prognosis. The aim of this study was to apply machine learning algorithms to optimize survival prediction after oncological resection of gastroesophageal cancers. METHODS: Eligible patients underwent onco...
Autores principales: | Jung, Jin-On, Crnovrsanin, Nerma, Wirsik, Naita Maren, Nienhüser, Henrik, Peters, Leila, Popp, Felix, Schulze, André, Wagner, Martin, Müller-Stich, Beat Peter, Büchler, Markus Wolfgang, Schmidt, Thomas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10097798/ https://www.ncbi.nlm.nih.gov/pubmed/35616729 http://dx.doi.org/10.1007/s00432-022-04063-5 |
Ejemplares similares
-
Clinical Relevance of Gastroesophageal Cancer Associated SNPs for Oncologic Outcome After Curative Surgery
por: Jung, Jin-On, et al.
Publicado: (2021) -
Systematic Review of Prognostic Role of Blood Cell Ratios in Patients with Gastric Cancer Undergoing Surgery
por: Schiefer, Sabine, et al.
Publicado: (2022) -
Clinical Characteristics and Oncological Outcomes of Surgically Treated Early-Onset Gastric Adenocarcinoma - a Retrospective Cohort Study
por: Rompen, Ingmar F., et al.
Publicado: (2023) -
Perioperative chemotherapy with 5-FU, leucovorin, oxaliplatin, and docetaxel (FLOT) for esophagogastric adenocarcinoma: ten years real-life experience from a surgical perspective
por: Sisic, Leila, et al.
Publicado: (2023) -
Anaesthesia as an influence in tumour progression
por: Plücker, Jadie, et al.
Publicado: (2021)