Cargando…
Estimating the monthly pan evaporation with limited climatic data in dryland based on the extended long short-term memory model enhanced with meta-heuristic algorithms
Accurate estimation of evaporation is of great significance for understanding regional drought, and managing and applying limited water resources in dryland. However, the application of the traditional estimation approaches is limited due to the lack of required meteorological parameters or experime...
Autores principales: | Fu, Tonglin, Li, Xinrong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10097824/ https://www.ncbi.nlm.nih.gov/pubmed/37045898 http://dx.doi.org/10.1038/s41598-023-32838-4 |
Ejemplares similares
-
Hybrid the long short-term memory with whale optimization algorithm and variational mode decomposition for monthly evapotranspiration estimation
por: Fu, Tonglin, et al.
Publicado: (2022) -
Application of long short-term memory neural network technique for predicting monthly pan evaporation
por: Abed, Mustafa, et al.
Publicado: (2021) -
Modelling monthly pan evaporation utilising Random Forest and deep learning algorithms
por: Abed, Mustafa, et al.
Publicado: (2022) -
Resilience to drought of dryland wetlands threatened by climate change
por: Sandi, Steven G., et al.
Publicado: (2020) -
Albedo feedbacks to future climate via climate change impacts on dryland biocrusts
por: Rutherford, William A., et al.
Publicado: (2017)