Cargando…

4E-BP1 counteracts human mesenchymal stem cell senescence via maintaining mitochondrial homeostasis

Although the mTOR-4E-BP1 signaling pathway is implicated in aging and aging-related disorders, the role of 4E-BP1 in regulating human stem cell homeostasis remains largely unknown. Here, we report that the expression of 4E-BP1 decreases along with the senescence of human mesenchymal stem cells (hMSC...

Descripción completa

Detalles Bibliográficos
Autores principales: He, Yifang, Ji, Qianzhao, Wu, Zeming, Cai, Yusheng, Yin, Jian, Zhang, Yiyuan, Zhang, Sheng, Liu, Xiaoqian, Zhang, Weiqi, Liu, Guang-Hui, Wang, Si, Song, Moshi, Qu, Jing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10098039/
https://www.ncbi.nlm.nih.gov/pubmed/36929036
http://dx.doi.org/10.1093/procel/pwac037
_version_ 1785024706591588352
author He, Yifang
Ji, Qianzhao
Wu, Zeming
Cai, Yusheng
Yin, Jian
Zhang, Yiyuan
Zhang, Sheng
Liu, Xiaoqian
Zhang, Weiqi
Liu, Guang-Hui
Wang, Si
Song, Moshi
Qu, Jing
author_facet He, Yifang
Ji, Qianzhao
Wu, Zeming
Cai, Yusheng
Yin, Jian
Zhang, Yiyuan
Zhang, Sheng
Liu, Xiaoqian
Zhang, Weiqi
Liu, Guang-Hui
Wang, Si
Song, Moshi
Qu, Jing
author_sort He, Yifang
collection PubMed
description Although the mTOR-4E-BP1 signaling pathway is implicated in aging and aging-related disorders, the role of 4E-BP1 in regulating human stem cell homeostasis remains largely unknown. Here, we report that the expression of 4E-BP1 decreases along with the senescence of human mesenchymal stem cells (hMSCs). Genetic inactivation of 4E-BP1 in hMSCs compromises mitochondrial respiration, increases mitochondrial reactive oxygen species (ROS) production, and accelerates cellular senescence. Mechanistically, the absence of 4E-BP1 destabilizes proteins in mitochondrial respiration complexes, especially several key subunits of complex III including UQCRC2. Ectopic expression of 4E-BP1 attenuates mitochondrial abnormalities and alleviates cellular senescence in 4E-BP1-deficient hMSCs as well as in physiologically aged hMSCs. These f indings together demonstrate that 4E-BP1 functions as a geroprotector to mitigate human stem cell senescence and maintain mitochondrial homeostasis, particularly for the mitochondrial respiration complex III, thus providing a new potential target to counteract human stem cell senescence.
format Online
Article
Text
id pubmed-10098039
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-100980392023-04-14 4E-BP1 counteracts human mesenchymal stem cell senescence via maintaining mitochondrial homeostasis He, Yifang Ji, Qianzhao Wu, Zeming Cai, Yusheng Yin, Jian Zhang, Yiyuan Zhang, Sheng Liu, Xiaoqian Zhang, Weiqi Liu, Guang-Hui Wang, Si Song, Moshi Qu, Jing Protein Cell Research Articles Although the mTOR-4E-BP1 signaling pathway is implicated in aging and aging-related disorders, the role of 4E-BP1 in regulating human stem cell homeostasis remains largely unknown. Here, we report that the expression of 4E-BP1 decreases along with the senescence of human mesenchymal stem cells (hMSCs). Genetic inactivation of 4E-BP1 in hMSCs compromises mitochondrial respiration, increases mitochondrial reactive oxygen species (ROS) production, and accelerates cellular senescence. Mechanistically, the absence of 4E-BP1 destabilizes proteins in mitochondrial respiration complexes, especially several key subunits of complex III including UQCRC2. Ectopic expression of 4E-BP1 attenuates mitochondrial abnormalities and alleviates cellular senescence in 4E-BP1-deficient hMSCs as well as in physiologically aged hMSCs. These f indings together demonstrate that 4E-BP1 functions as a geroprotector to mitigate human stem cell senescence and maintain mitochondrial homeostasis, particularly for the mitochondrial respiration complex III, thus providing a new potential target to counteract human stem cell senescence. Oxford University Press 2022-08-23 /pmc/articles/PMC10098039/ /pubmed/36929036 http://dx.doi.org/10.1093/procel/pwac037 Text en ©The Author(s) 2022. Published by Oxford University Press on behalf of Higher Education Press. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Articles
He, Yifang
Ji, Qianzhao
Wu, Zeming
Cai, Yusheng
Yin, Jian
Zhang, Yiyuan
Zhang, Sheng
Liu, Xiaoqian
Zhang, Weiqi
Liu, Guang-Hui
Wang, Si
Song, Moshi
Qu, Jing
4E-BP1 counteracts human mesenchymal stem cell senescence via maintaining mitochondrial homeostasis
title 4E-BP1 counteracts human mesenchymal stem cell senescence via maintaining mitochondrial homeostasis
title_full 4E-BP1 counteracts human mesenchymal stem cell senescence via maintaining mitochondrial homeostasis
title_fullStr 4E-BP1 counteracts human mesenchymal stem cell senescence via maintaining mitochondrial homeostasis
title_full_unstemmed 4E-BP1 counteracts human mesenchymal stem cell senescence via maintaining mitochondrial homeostasis
title_short 4E-BP1 counteracts human mesenchymal stem cell senescence via maintaining mitochondrial homeostasis
title_sort 4e-bp1 counteracts human mesenchymal stem cell senescence via maintaining mitochondrial homeostasis
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10098039/
https://www.ncbi.nlm.nih.gov/pubmed/36929036
http://dx.doi.org/10.1093/procel/pwac037
work_keys_str_mv AT heyifang 4ebp1counteractshumanmesenchymalstemcellsenescenceviamaintainingmitochondrialhomeostasis
AT jiqianzhao 4ebp1counteractshumanmesenchymalstemcellsenescenceviamaintainingmitochondrialhomeostasis
AT wuzeming 4ebp1counteractshumanmesenchymalstemcellsenescenceviamaintainingmitochondrialhomeostasis
AT caiyusheng 4ebp1counteractshumanmesenchymalstemcellsenescenceviamaintainingmitochondrialhomeostasis
AT yinjian 4ebp1counteractshumanmesenchymalstemcellsenescenceviamaintainingmitochondrialhomeostasis
AT zhangyiyuan 4ebp1counteractshumanmesenchymalstemcellsenescenceviamaintainingmitochondrialhomeostasis
AT zhangsheng 4ebp1counteractshumanmesenchymalstemcellsenescenceviamaintainingmitochondrialhomeostasis
AT liuxiaoqian 4ebp1counteractshumanmesenchymalstemcellsenescenceviamaintainingmitochondrialhomeostasis
AT zhangweiqi 4ebp1counteractshumanmesenchymalstemcellsenescenceviamaintainingmitochondrialhomeostasis
AT liuguanghui 4ebp1counteractshumanmesenchymalstemcellsenescenceviamaintainingmitochondrialhomeostasis
AT wangsi 4ebp1counteractshumanmesenchymalstemcellsenescenceviamaintainingmitochondrialhomeostasis
AT songmoshi 4ebp1counteractshumanmesenchymalstemcellsenescenceviamaintainingmitochondrialhomeostasis
AT qujing 4ebp1counteractshumanmesenchymalstemcellsenescenceviamaintainingmitochondrialhomeostasis