Cargando…
A comparative analysis of sleep spindle characteristics of sleep-disordered patients and normal subjects
Spindles differ in density, amplitude, and frequency, and these variations reflect different physiological processes. Sleep disorders are characterized by difficulty in falling asleep and maintaining sleep. In this study, we proposed a new spindle wave detection algorithm, which was more effective c...
Autores principales: | Chen, Chao, Wang, Kun, Belkacem, Abdelkader Nasreddine, Lu, Lin, Yi, Weibo, Liang, Jun, Huang, Zhaoyang, Ming, Dong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10098120/ https://www.ncbi.nlm.nih.gov/pubmed/37065923 http://dx.doi.org/10.3389/fnins.2023.1110320 |
Ejemplares similares
-
Hierarchical fusion detection algorithm for sleep spindle detection
por: Chen, Chao, et al.
Publicado: (2023) -
An improved multi-input deep convolutional neural network for automatic emotion recognition
por: Chen, Peiji, et al.
Publicado: (2022) -
Sleep Spindles Predict Stress-Related Increases in Sleep Disturbances
por: Dang-Vu, Thien Thanh, et al.
Publicado: (2015) -
Spatiotemporal Dynamics of Sleep Spindle Sources Across NREM Sleep Cycles
por: Alfonsi, Valentina, et al.
Publicado: (2019) -
On closed-loop brain stimulation systems for improving the quality of life of patients with neurological disorders
por: Belkacem, Abdelkader Nasreddine, et al.
Publicado: (2023)