Cargando…
Research on Transportation Mode Recognition Based on Multi-Head Attention Temporal Convolutional Network
Transportation mode recognition is of great importance in analyzing people’s travel patterns and planning urban roads. To make more accurate judgments on the transportation mode of the user, we propose a deep learning fusion model based on multi-head attentional temporal convolution (TCMH). First, t...
Autores principales: | Cheng, Shuyu, Liu, Yingan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10098534/ https://www.ncbi.nlm.nih.gov/pubmed/37050645 http://dx.doi.org/10.3390/s23073585 |
Ejemplares similares
-
Action Recognition by an Attention-Aware Temporal Weighted Convolutional Neural Network
por: Wang, Le, et al.
Publicado: (2018) -
Self Multi-Head Attention-based Convolutional Neural Networks for fake news detection
por: Fang, Yong, et al.
Publicado: (2019) -
Transportation Mode Detection Using Temporal Convolutional Networks Based on Sensors Integrated into Smartphones
por: Wang, Pu, et al.
Publicado: (2022) -
Speech Emotion Recognition Using Convolution Neural Networks and Multi-Head Convolutional Transformer
por: Ullah, Rizwan, et al.
Publicado: (2023) -
Multi-Head Spatiotemporal Attention Graph Convolutional Network for Traffic Prediction
por: Oluwasanmi, Ariyo, et al.
Publicado: (2023)