Cargando…
SS-CPGAN: Self-Supervised Cut-and-Pasting Generative Adversarial Network for Object Segmentation
This paper proposes a novel self-supervised based Cut-and-Paste GAN to perform foreground object segmentation and generate realistic composite images without manual annotations. We accomplish this goal by a simple yet effective self-supervised approach coupled with the U-Net discriminator. The propo...
Autores principales: | Chaturvedi, Kunal, Braytee, Ali, Li, Jun, Prasad, Mukesh |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10098536/ https://www.ncbi.nlm.nih.gov/pubmed/37050712 http://dx.doi.org/10.3390/s23073649 |
Ejemplares similares
-
Generative Adversarial Training for Supervised and Semi-supervised Learning
por: Wang, Xianmin, et al.
Publicado: (2022) -
Supervised Contrastive Learning and Intra-Dataset Adversarial Adaptation for Iris Segmentation
por: Zhou, Zhiyong, et al.
Publicado: (2022) -
Generative adversarial networks based skin lesion segmentation
por: Innani, Shubham, et al.
Publicado: (2023) -
Semi-Supervised Generative Adversarial Nets with Multiple Generators for SAR Image Recognition
por: Gao, Fei, et al.
Publicado: (2018) -
Semi-supervised Learning Approach to Generate Neuroimaging Modalities with Adversarial Training
por: Nguyen, Harrison, et al.
Publicado: (2020)