Cargando…
Comparison of End-to-End Neural Network Architectures and Data Augmentation Methods for Automatic Infant Motility Assessment Using Wearable Sensors
Infant motility assessment using intelligent wearables is a promising new approach for assessment of infant neurophysiological development, and where efficient signal analysis plays a central role. This study investigates the use of different end-to-end neural network architectures for processing in...
Autores principales: | Airaksinen, Manu, Vanhatalo, Sampsa, Räsänen, Okko |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10098558/ https://www.ncbi.nlm.nih.gov/pubmed/37050833 http://dx.doi.org/10.3390/s23073773 |
Ejemplares similares
-
Automatic Posture and Movement Tracking of Infants with Wearable Movement Sensors
por: Airaksinen, Manu, et al.
Publicado: (2020) -
Intelligent wearable allows out-of-the-lab tracking of developing motor abilities in infants
por: Airaksinen, Manu, et al.
Publicado: (2022) -
Charting infants’ motor development at home using a wearable system: validation and comparison to physical growth charts
por: Airaksinen, Manu, et al.
Publicado: (2023) -
An Open Source Classifier for Bed Mattress Signal in Infant Sleep Monitoring
por: Ranta, Jukka, et al.
Publicado: (2021) -
End-to-end design of wearable sensors
por: Ates, H. Ceren, et al.
Publicado: (2022)