Cargando…
Metaheuristic Optimization-Based Feature Selection for Imagery and Arithmetic Tasks: An fNIRS Study
In recent decades, the brain–computer interface (BCI) has emerged as a leading area of research. The feature selection is vital to reduce the dataset’s dimensionality, increase the computing effectiveness, and enhance the BCI’s performance. Using activity-related features leads to a high classificat...
Autores principales: | Zafar, Amad, Hussain, Shaik Javeed, Ali, Muhammad Umair, Lee, Seung Won |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10098559/ https://www.ncbi.nlm.nih.gov/pubmed/37050774 http://dx.doi.org/10.3390/s23073714 |
Ejemplares similares
-
fNIRS Complexity Analysis for the Assessment of Motor Imagery and Mental Arithmetic Tasks
por: Ghouse, Ameer, et al.
Publicado: (2020) -
WBM-DLNets: Wrapper-Based Metaheuristic Deep Learning Networks Feature Optimization for Enhancing Brain Tumor Detection
por: Ali, Muhammad Umair, et al.
Publicado: (2023) -
OptEF-BCI: An Optimization-Based Hybrid EEG and fNIRS–Brain Computer Interface
por: Ali, Muhammad Umair, et al.
Publicado: (2023) -
Observation and motor imagery balance tasks evaluation: An fNIRS feasibility study
por: Almulla, Latifah, et al.
Publicado: (2022) -
The neural correlates of mental arithmetic in adolescents: a longitudinal fNIRS study
por: Artemenko, Christina, et al.
Publicado: (2018)