Cargando…

Bearing Fault Diagnosis Method Based on Improved Singular Value Decomposition Package

The singular value decomposition package (SVDP) is often used for signal decomposition and feature extraction. At present, the general SVDP has insufficient feature extraction ability due to the two-row structure of the Hankel matrix, which leads to mode mixing. In this paper, an improved singular v...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhu, Huibin, He, Zhangming, Xiao, Yaqi, Wang, Jiongqi, Zhou, Haiyin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10098611/
https://www.ncbi.nlm.nih.gov/pubmed/37050819
http://dx.doi.org/10.3390/s23073759
Descripción
Sumario:The singular value decomposition package (SVDP) is often used for signal decomposition and feature extraction. At present, the general SVDP has insufficient feature extraction ability due to the two-row structure of the Hankel matrix, which leads to mode mixing. In this paper, an improved singular value decomposition packet (ISVDP) algorithm is proposed: the feature extraction ability is improved by changing the structure of the Hankel matrix, and similar signal sub-components are selected by similarity to avoid having the same frequency component signals being decomposed into different sub-signals. In this paper, the effectiveness of ISVDP is illustrated by a set of simulation signals, and it is utilized in fault diagnosis of bearing data. The results show that ISVDP can effectively suppress the model-mixing phenomenon and can extract the fault features in bearing vibration signals more accurately.