Cargando…
Towards Automatic Crack Size Estimation with iFEM for Structural Health Monitoring
The inverse finite element method (iFEM) is a model-based technique to compute the displacement (and then the strain) field of a structure from strain measurements and a geometrical discretization of the same. Different literature works exploit the error between the numerically reconstructed strains...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10098624/ https://www.ncbi.nlm.nih.gov/pubmed/37050466 http://dx.doi.org/10.3390/s23073406 |
_version_ | 1785024854673588224 |
---|---|
author | Oboe, Daniele Poloni, Dario Sbarufatti, Claudio Giglio, Marco |
author_facet | Oboe, Daniele Poloni, Dario Sbarufatti, Claudio Giglio, Marco |
author_sort | Oboe, Daniele |
collection | PubMed |
description | The inverse finite element method (iFEM) is a model-based technique to compute the displacement (and then the strain) field of a structure from strain measurements and a geometrical discretization of the same. Different literature works exploit the error between the numerically reconstructed strains and the experimental measurements to perform damage identification in a structural health monitoring framework. However, only damage detection and localization are performed, without attempting a proper damage size estimation. The latter could be based on machine learning techniques; however, an a priori definition of the damage conditions would be required. To overcome these limitations, the present work proposes a new approach in which the damage is systematically introduced in the iFEM model to minimize its discrepancy with respect to the physical structure. This is performed with a maximum likelihood estimation framework, where the most accurate damage scenario is selected among a series of different models. The proposed approach was experimentally verified on an aluminum plate subjected to fatigue crack propagation, which enables the creation of a digital twin of the structure itself. The strain field fed to the iFEM routine was experimentally measured with an optical backscatter reflectometry fiber and the methodology was validated with independent observations of lasers and the digital image correlation. |
format | Online Article Text |
id | pubmed-10098624 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-100986242023-04-14 Towards Automatic Crack Size Estimation with iFEM for Structural Health Monitoring Oboe, Daniele Poloni, Dario Sbarufatti, Claudio Giglio, Marco Sensors (Basel) Article The inverse finite element method (iFEM) is a model-based technique to compute the displacement (and then the strain) field of a structure from strain measurements and a geometrical discretization of the same. Different literature works exploit the error between the numerically reconstructed strains and the experimental measurements to perform damage identification in a structural health monitoring framework. However, only damage detection and localization are performed, without attempting a proper damage size estimation. The latter could be based on machine learning techniques; however, an a priori definition of the damage conditions would be required. To overcome these limitations, the present work proposes a new approach in which the damage is systematically introduced in the iFEM model to minimize its discrepancy with respect to the physical structure. This is performed with a maximum likelihood estimation framework, where the most accurate damage scenario is selected among a series of different models. The proposed approach was experimentally verified on an aluminum plate subjected to fatigue crack propagation, which enables the creation of a digital twin of the structure itself. The strain field fed to the iFEM routine was experimentally measured with an optical backscatter reflectometry fiber and the methodology was validated with independent observations of lasers and the digital image correlation. MDPI 2023-03-23 /pmc/articles/PMC10098624/ /pubmed/37050466 http://dx.doi.org/10.3390/s23073406 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Oboe, Daniele Poloni, Dario Sbarufatti, Claudio Giglio, Marco Towards Automatic Crack Size Estimation with iFEM for Structural Health Monitoring |
title | Towards Automatic Crack Size Estimation with iFEM for Structural Health Monitoring |
title_full | Towards Automatic Crack Size Estimation with iFEM for Structural Health Monitoring |
title_fullStr | Towards Automatic Crack Size Estimation with iFEM for Structural Health Monitoring |
title_full_unstemmed | Towards Automatic Crack Size Estimation with iFEM for Structural Health Monitoring |
title_short | Towards Automatic Crack Size Estimation with iFEM for Structural Health Monitoring |
title_sort | towards automatic crack size estimation with ifem for structural health monitoring |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10098624/ https://www.ncbi.nlm.nih.gov/pubmed/37050466 http://dx.doi.org/10.3390/s23073406 |
work_keys_str_mv | AT oboedaniele towardsautomaticcracksizeestimationwithifemforstructuralhealthmonitoring AT polonidario towardsautomaticcracksizeestimationwithifemforstructuralhealthmonitoring AT sbarufatticlaudio towardsautomaticcracksizeestimationwithifemforstructuralhealthmonitoring AT gigliomarco towardsautomaticcracksizeestimationwithifemforstructuralhealthmonitoring |