Cargando…
Quaternion Wavelet Transform and a Feedforward Neural Network-Aided Intelligent Distributed Optical Fiber Sensing System
In this paper, aiming at a large infrastructure structural health monitoring network, a quaternion wavelet transform (QWT) image denoising algorithm is proposed to process original data, and a depth feedforward neural network (FNN) is introduced to extract physical information from the denoised data...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10098647/ https://www.ncbi.nlm.nih.gov/pubmed/37050697 http://dx.doi.org/10.3390/s23073637 |
_version_ | 1785024860204826624 |
---|---|
author | Fan, Lei Wang, Yongjun Zhang, Hongxin Li, Chao Huang, Xingyuan Zhang, Qi Xin, Xiangjun |
author_facet | Fan, Lei Wang, Yongjun Zhang, Hongxin Li, Chao Huang, Xingyuan Zhang, Qi Xin, Xiangjun |
author_sort | Fan, Lei |
collection | PubMed |
description | In this paper, aiming at a large infrastructure structural health monitoring network, a quaternion wavelet transform (QWT) image denoising algorithm is proposed to process original data, and a depth feedforward neural network (FNN) is introduced to extract physical information from the denoised data. A Brillouin optical time domain analysis (BOTDA)-distributed sensor system is established, and a QWT denoising algorithm and a temperature extraction scheme using FNN are demonstrated. The results indicate that when the frequency interval is less than 4 MHz, the temperature error is kept within ±0.11 °C, but is ±0.15 °C at 6 MHz. It takes less than 17 s to extract the temperature distribution from the FNN. Moreover, input vectors for the Brillouin gain spectrum with a frequency interval of no more than 6 MHZ are unified into 200 input elements by linear interpolation. We hope that with the progress in technology and algorithm optimization, the FNN information extraction and QWT denoising technology will play an important role in distributed optical fiber sensor networks for real-time monitoring of large-scale infrastructure. |
format | Online Article Text |
id | pubmed-10098647 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-100986472023-04-14 Quaternion Wavelet Transform and a Feedforward Neural Network-Aided Intelligent Distributed Optical Fiber Sensing System Fan, Lei Wang, Yongjun Zhang, Hongxin Li, Chao Huang, Xingyuan Zhang, Qi Xin, Xiangjun Sensors (Basel) Article In this paper, aiming at a large infrastructure structural health monitoring network, a quaternion wavelet transform (QWT) image denoising algorithm is proposed to process original data, and a depth feedforward neural network (FNN) is introduced to extract physical information from the denoised data. A Brillouin optical time domain analysis (BOTDA)-distributed sensor system is established, and a QWT denoising algorithm and a temperature extraction scheme using FNN are demonstrated. The results indicate that when the frequency interval is less than 4 MHz, the temperature error is kept within ±0.11 °C, but is ±0.15 °C at 6 MHz. It takes less than 17 s to extract the temperature distribution from the FNN. Moreover, input vectors for the Brillouin gain spectrum with a frequency interval of no more than 6 MHZ are unified into 200 input elements by linear interpolation. We hope that with the progress in technology and algorithm optimization, the FNN information extraction and QWT denoising technology will play an important role in distributed optical fiber sensor networks for real-time monitoring of large-scale infrastructure. MDPI 2023-03-31 /pmc/articles/PMC10098647/ /pubmed/37050697 http://dx.doi.org/10.3390/s23073637 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Fan, Lei Wang, Yongjun Zhang, Hongxin Li, Chao Huang, Xingyuan Zhang, Qi Xin, Xiangjun Quaternion Wavelet Transform and a Feedforward Neural Network-Aided Intelligent Distributed Optical Fiber Sensing System |
title | Quaternion Wavelet Transform and a Feedforward Neural Network-Aided Intelligent Distributed Optical Fiber Sensing System |
title_full | Quaternion Wavelet Transform and a Feedforward Neural Network-Aided Intelligent Distributed Optical Fiber Sensing System |
title_fullStr | Quaternion Wavelet Transform and a Feedforward Neural Network-Aided Intelligent Distributed Optical Fiber Sensing System |
title_full_unstemmed | Quaternion Wavelet Transform and a Feedforward Neural Network-Aided Intelligent Distributed Optical Fiber Sensing System |
title_short | Quaternion Wavelet Transform and a Feedforward Neural Network-Aided Intelligent Distributed Optical Fiber Sensing System |
title_sort | quaternion wavelet transform and a feedforward neural network-aided intelligent distributed optical fiber sensing system |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10098647/ https://www.ncbi.nlm.nih.gov/pubmed/37050697 http://dx.doi.org/10.3390/s23073637 |
work_keys_str_mv | AT fanlei quaternionwavelettransformandafeedforwardneuralnetworkaidedintelligentdistributedopticalfibersensingsystem AT wangyongjun quaternionwavelettransformandafeedforwardneuralnetworkaidedintelligentdistributedopticalfibersensingsystem AT zhanghongxin quaternionwavelettransformandafeedforwardneuralnetworkaidedintelligentdistributedopticalfibersensingsystem AT lichao quaternionwavelettransformandafeedforwardneuralnetworkaidedintelligentdistributedopticalfibersensingsystem AT huangxingyuan quaternionwavelettransformandafeedforwardneuralnetworkaidedintelligentdistributedopticalfibersensingsystem AT zhangqi quaternionwavelettransformandafeedforwardneuralnetworkaidedintelligentdistributedopticalfibersensingsystem AT xinxiangjun quaternionwavelettransformandafeedforwardneuralnetworkaidedintelligentdistributedopticalfibersensingsystem |