Cargando…
High‐dimensional principal component analysis with heterogeneous missingness
We study the problem of high‐dimensional Principal Component Analysis (PCA) with missing observations. In a simple, homogeneous observation model, we show that an existing observed‐proportion weighted (OPW) estimator of the leading principal components can (nearly) attain the minimax optimal rate of...
Autores principales: | Zhu, Ziwei, Wang, Tengyao, Samworth, Richard J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10098677/ https://www.ncbi.nlm.nih.gov/pubmed/37065873 http://dx.doi.org/10.1111/rssb.12550 |
Ejemplares similares
-
Pairwise joint modeling of clustered and high-dimensional outcomes with covariate missingness in pediatric pneumonia care
por: Gachau, Susan, et al.
Publicado: (2022) -
Ignoring Non-ignorable Missingness
por: Rabe-Hesketh, Sophia, et al.
Publicado: (2022) -
Reading Profiles in Multi-Site Data With Missingness
por: Eckert, Mark A., et al.
Publicado: (2018) -
Principal Component Geostatistical Approach for large-dimensional inverse problems
por: Kitanidis, P K, et al.
Publicado: (2014) -
Principal component analysis
por: Gray, Virginia
Publicado: (2017)