Cargando…

A Method for Stress Detection Using Empatica E4 Bracelet and Machine-Learning Techniques

In response to challenging circumstances, the human body can experience marked levels of anxiety and distress. To prevent stress-related complications, timely identification of stress symptoms is crucial, necessitating the need for continuous stress monitoring. Wearable devices offer a means of real...

Descripción completa

Detalles Bibliográficos
Autores principales: Campanella, Sara, Altaleb, Ayham, Belli, Alberto, Pierleoni, Paola, Palma, Lorenzo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10098696/
https://www.ncbi.nlm.nih.gov/pubmed/37050625
http://dx.doi.org/10.3390/s23073565
Descripción
Sumario:In response to challenging circumstances, the human body can experience marked levels of anxiety and distress. To prevent stress-related complications, timely identification of stress symptoms is crucial, necessitating the need for continuous stress monitoring. Wearable devices offer a means of real-time and ongoing data collection, facilitating personalized stress monitoring. Based on our protocol for data pre-processing, this study proposes to analyze signals obtained from the Empatica E4 bracelet using machine-learning algorithms (Random Forest, SVM, and Logistic Regression) to determine the efficacy of the abovementioned techniques in differentiating between stressful and non-stressful situations. Photoplethysmographic and electrodermal activity signals were collected from 29 subjects to extract 27 features which were then fed into three different machine-learning algorithms for binary classification. Using MATLAB after applying the chi-square test and Pearson’s correlation coefficient on WEKA for features’ importance ranking, the results demonstrated that the Random Forest model has the highest stability (accuracy of 76.5%) using all the features. Moreover, the Random Forest applying the chi-test for feature selection reached consistent results in terms of stress evaluation based on precision, recall, and F1-measure (71%, 60%, 65%, respectively).