Cargando…

Maximizing Heterogeneous Server Utilization with Limited Availability Times for Divisible Loads Scheduling on Networked Systems

Most of the available divisible-load scheduling models assume that all servers in networked systems are idle before workloads arrive and that they can remain available online during workload computation. In fact, this assumption is not always valid. Different servers on networked systems may have he...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Xiaoli, Veeravalli, Bharadwaj, Song, Xiaobo, Zhang, Kaiqi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10098772/
https://www.ncbi.nlm.nih.gov/pubmed/37050610
http://dx.doi.org/10.3390/s23073550
Descripción
Sumario:Most of the available divisible-load scheduling models assume that all servers in networked systems are idle before workloads arrive and that they can remain available online during workload computation. In fact, this assumption is not always valid. Different servers on networked systems may have heterogenous available times. If we ignore the availability constraints when dividing and distributing workloads among servers, some servers may not be able to start processing their assigned load fractions or deliver them on time. In view of this, we propose a new multi-installment scheduling model based on server availability time constraints. To solve this problem, we design an efficient heuristic algorithm consisting of a repair strategy and a local search strategy, by which an optimal load partitioning scheme is derived. The repair strategy guarantees time constraints, while the local search strategy achieves optimality. We evaluate the performance via rigorous simulation experiments and our results show that the proposed algorithm is suitable for solving large-scale scheduling problems employing heterogeneous servers with arbitrary available times. The proposed algorithm is shown to be superior to the existing algorithm in terms of achieving a shorter makespan of workloads.