Cargando…
Comparing the Catalytic and Structural Characteristics of a ‘Short’ Unspecific Peroxygenase (UPO) Expressed in Pichia pastoris and Escherichia coli
Unspecific peroxygenases (UPOs) have emerged as valuable tools for the oxygenation of non‐activated carbon atoms, as they exhibit high turnovers, good stability and depend only on hydrogen peroxide as the external oxidant for activity. However, the isolation of UPOs from their natural fungal sources...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10098773/ https://www.ncbi.nlm.nih.gov/pubmed/36374006 http://dx.doi.org/10.1002/cbic.202200558 |
_version_ | 1785024894680956928 |
---|---|
author | Robinson, Wendy X. Q. Mielke, Tamara Melling, Benjamin Cuetos, Anibal Parkin, Alison Unsworth, William P. Cartwright, Jared Grogan, Gideon |
author_facet | Robinson, Wendy X. Q. Mielke, Tamara Melling, Benjamin Cuetos, Anibal Parkin, Alison Unsworth, William P. Cartwright, Jared Grogan, Gideon |
author_sort | Robinson, Wendy X. Q. |
collection | PubMed |
description | Unspecific peroxygenases (UPOs) have emerged as valuable tools for the oxygenation of non‐activated carbon atoms, as they exhibit high turnovers, good stability and depend only on hydrogen peroxide as the external oxidant for activity. However, the isolation of UPOs from their natural fungal sources remains a barrier to wider application. We have cloned the gene encoding an ‘artificial’ peroxygenase (artUPO), close in sequence to the ‘short’ UPO from Marasmius rotula (MroUPO), and expressed it in both the yeast Pichia pastoris and E. coli to compare the catalytic and structural characteristics of the enzymes produced in each system. Catalytic efficiency for the UPO substrate 5‐nitro‐1,3‐benzodioxole (NBD) was largely the same for both enzymes, and the structures also revealed few differences apart from the expected glycosylation of the yeast enzyme. However, the glycosylated enzyme displayed greater stability, as determined by nano differential scanning fluorimetry (nano‐DSF) measurements. Interestingly, while artUPO hydroxylated ethylbenzene derivatives to give the (R)‐alcohols, also given by a variant of the ‘long’ UPO from Agrocybe aegerita (AaeUPO), it gave the opposite (S)‐series of sulfoxide products from a range of sulfide substrates, broadening the scope for application of the enzymes. The structures of artUPO reveal substantial differences to that of AaeUPO, and provide a platform for investigating the distinctive activity of this and related'short’ UPOs. |
format | Online Article Text |
id | pubmed-10098773 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-100987732023-04-14 Comparing the Catalytic and Structural Characteristics of a ‘Short’ Unspecific Peroxygenase (UPO) Expressed in Pichia pastoris and Escherichia coli Robinson, Wendy X. Q. Mielke, Tamara Melling, Benjamin Cuetos, Anibal Parkin, Alison Unsworth, William P. Cartwright, Jared Grogan, Gideon Chembiochem Research Articles Unspecific peroxygenases (UPOs) have emerged as valuable tools for the oxygenation of non‐activated carbon atoms, as they exhibit high turnovers, good stability and depend only on hydrogen peroxide as the external oxidant for activity. However, the isolation of UPOs from their natural fungal sources remains a barrier to wider application. We have cloned the gene encoding an ‘artificial’ peroxygenase (artUPO), close in sequence to the ‘short’ UPO from Marasmius rotula (MroUPO), and expressed it in both the yeast Pichia pastoris and E. coli to compare the catalytic and structural characteristics of the enzymes produced in each system. Catalytic efficiency for the UPO substrate 5‐nitro‐1,3‐benzodioxole (NBD) was largely the same for both enzymes, and the structures also revealed few differences apart from the expected glycosylation of the yeast enzyme. However, the glycosylated enzyme displayed greater stability, as determined by nano differential scanning fluorimetry (nano‐DSF) measurements. Interestingly, while artUPO hydroxylated ethylbenzene derivatives to give the (R)‐alcohols, also given by a variant of the ‘long’ UPO from Agrocybe aegerita (AaeUPO), it gave the opposite (S)‐series of sulfoxide products from a range of sulfide substrates, broadening the scope for application of the enzymes. The structures of artUPO reveal substantial differences to that of AaeUPO, and provide a platform for investigating the distinctive activity of this and related'short’ UPOs. John Wiley and Sons Inc. 2022-11-30 2023-01-03 /pmc/articles/PMC10098773/ /pubmed/36374006 http://dx.doi.org/10.1002/cbic.202200558 Text en © 2022 The Authors. ChemBioChem published by Wiley-VCH GmbH https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Articles Robinson, Wendy X. Q. Mielke, Tamara Melling, Benjamin Cuetos, Anibal Parkin, Alison Unsworth, William P. Cartwright, Jared Grogan, Gideon Comparing the Catalytic and Structural Characteristics of a ‘Short’ Unspecific Peroxygenase (UPO) Expressed in Pichia pastoris and Escherichia coli |
title | Comparing the Catalytic and Structural Characteristics of a ‘Short’ Unspecific Peroxygenase (UPO) Expressed in Pichia pastoris and Escherichia coli
|
title_full | Comparing the Catalytic and Structural Characteristics of a ‘Short’ Unspecific Peroxygenase (UPO) Expressed in Pichia pastoris and Escherichia coli
|
title_fullStr | Comparing the Catalytic and Structural Characteristics of a ‘Short’ Unspecific Peroxygenase (UPO) Expressed in Pichia pastoris and Escherichia coli
|
title_full_unstemmed | Comparing the Catalytic and Structural Characteristics of a ‘Short’ Unspecific Peroxygenase (UPO) Expressed in Pichia pastoris and Escherichia coli
|
title_short | Comparing the Catalytic and Structural Characteristics of a ‘Short’ Unspecific Peroxygenase (UPO) Expressed in Pichia pastoris and Escherichia coli
|
title_sort | comparing the catalytic and structural characteristics of a ‘short’ unspecific peroxygenase (upo) expressed in pichia pastoris and escherichia coli |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10098773/ https://www.ncbi.nlm.nih.gov/pubmed/36374006 http://dx.doi.org/10.1002/cbic.202200558 |
work_keys_str_mv | AT robinsonwendyxq comparingthecatalyticandstructuralcharacteristicsofashortunspecificperoxygenaseupoexpressedinpichiapastorisandescherichiacoli AT mielketamara comparingthecatalyticandstructuralcharacteristicsofashortunspecificperoxygenaseupoexpressedinpichiapastorisandescherichiacoli AT mellingbenjamin comparingthecatalyticandstructuralcharacteristicsofashortunspecificperoxygenaseupoexpressedinpichiapastorisandescherichiacoli AT cuetosanibal comparingthecatalyticandstructuralcharacteristicsofashortunspecificperoxygenaseupoexpressedinpichiapastorisandescherichiacoli AT parkinalison comparingthecatalyticandstructuralcharacteristicsofashortunspecificperoxygenaseupoexpressedinpichiapastorisandescherichiacoli AT unsworthwilliamp comparingthecatalyticandstructuralcharacteristicsofashortunspecificperoxygenaseupoexpressedinpichiapastorisandescherichiacoli AT cartwrightjared comparingthecatalyticandstructuralcharacteristicsofashortunspecificperoxygenaseupoexpressedinpichiapastorisandescherichiacoli AT grogangideon comparingthecatalyticandstructuralcharacteristicsofashortunspecificperoxygenaseupoexpressedinpichiapastorisandescherichiacoli |