Cargando…
Dual-Sensing Piezoresponsive Foam for Dynamic and Static Loading
Polymeric foams, embedded with nano-scale conductive particles, have previously been shown to display quasi-piezoelectric (QPE) properties; i.e., they produce a voltage in response to rapid deformation. This behavior has been utilized to sense impact and vibration in foam components, such as in spor...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10098782/ https://www.ncbi.nlm.nih.gov/pubmed/37050779 http://dx.doi.org/10.3390/s23073719 |
Sumario: | Polymeric foams, embedded with nano-scale conductive particles, have previously been shown to display quasi-piezoelectric (QPE) properties; i.e., they produce a voltage in response to rapid deformation. This behavior has been utilized to sense impact and vibration in foam components, such as in sports padding and vibration-isolating pads. However, a detailed characterization of the sensing behavior has not been undertaken. Furthermore, the potential for sensing quasi-static deformation in the same material has not been explored. This paper provides new insights into these self-sensing foams by characterizing voltage response vs frequency of deformation. The correlation between temperature and voltage response is also quantified. Furthermore, a new sensing functionality is observed, in the form of a piezoresistive response to quasi-static deformation. The piezoresistive characteristics are quantified for both in-plane and through-thickness resistance configurations. The new functionality greatly enhances the potential applications for the foam, for example, as insoles that can characterize ground reaction force and pressure during dynamic and/or quasi-static circumstances, or as seat cushioning that can sense pressure and impact. |
---|