Cargando…
Swin-Transformer-Based YOLOv5 for Small-Object Detection in Remote Sensing Images
This study aimed to address the problems of low detection accuracy and inaccurate positioning of small-object detection in remote sensing images. An improved architecture based on the Swin Transformer and YOLOv5 is proposed. First, Complete-IOU (CIOU) was introduced to improve the K-means clustering...
Autores principales: | Cao, Xuan, Zhang, Yanwei, Lang, Song, Gong, Yan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10098803/ https://www.ncbi.nlm.nih.gov/pubmed/37050694 http://dx.doi.org/10.3390/s23073634 |
Ejemplares similares
-
Swin-YOLOv5: Research and Application of Fire and Smoke Detection Algorithm Based on YOLOv5
por: Zhang, Shangjie Ge, et al.
Publicado: (2022) -
Small target detection with remote sensing images based on an improved YOLOv5 algorithm
por: Pei, Wenjing, et al.
Publicado: (2023) -
Corrigendum: Small target detection with remote sensing images based on an improved YOLOv5 algorithm
por: Pei, Wenjing, et al.
Publicado: (2023) -
NRT-YOLO: Improved YOLOv5 Based on Nested Residual Transformer for Tiny Remote Sensing Object Detection
por: Liu, Yukuan, et al.
Publicado: (2022) -
FEA-Swin: Foreground Enhancement Attention Swin Transformer Network for Accurate UAV-Based Dense Object Detection
por: Xu, Wenyu, et al.
Publicado: (2022)