Cargando…
Modified ADRC Design of Permanent Magnet Synchronous Motor Based on Improved Memetic Algorithm
In this paper, a novel modified auto disturbance rejection control (ADRC) design of a permanent magnet synchronous motor based on the improved memetic algorithm (IMA) is proposed. Firstly, there is an obvious system ripple caused by the defect that the optimal control function used in traditional AD...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10098838/ https://www.ncbi.nlm.nih.gov/pubmed/37050681 http://dx.doi.org/10.3390/s23073621 |
Sumario: | In this paper, a novel modified auto disturbance rejection control (ADRC) design of a permanent magnet synchronous motor based on the improved memetic algorithm (IMA) is proposed. Firstly, there is an obvious system ripple caused by the defect that the optimal control function used in traditional ADRC cannot be differentiable and smooth at the segment point; aiming at weakening the system ripple effectively, the proposed method constructs a novel differentiable and smooth optimal control function to modify the ADRC design. Furthermore, aiming at improving the integration parameters optimization effect effectively, a novel improved memetic algorithm is proposed for obtaining the optimal parameters of ADRC. Specifically, an IMA with high-quality balance based on an adaptive nonlinear decreasing strategy for the convergence factor, Gaussian mutation mechanism, improved learning mechanism with the high-quality balance between competitive and opposition-based learning (OBL) and an elite set maintenance mechanism based on fusion distance is proposed so that these strategies can improve the optimization precision by a large margin. Finally, the experiment results of the PMSM speed control practical cases show that the ADRC based on IMA has an apparent better optimization effect than that of fuzzy PI, traditional ADRC based on the genetic algorithm and an improved ADRC based on improved moth–flame optimization. |
---|