Cargando…
Covalent Triazine Frameworks Decorated with Pyridine-Type Carbonitride Moieties: Enhanced Photocatalytic Hydrogen Evolution by Improved Charge Separation
A simple procedure of calcination under an Ar atmosphere has been successfully applied to create a covalent triazine framework bearing pyridine-type carbonitride moieties (PCN@CTF). The appending of PCN on the CTF led to visible light absorption at up to 600 nm in the UV/Vis diffuse-reflectance spec...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10098859/ https://www.ncbi.nlm.nih.gov/pubmed/37050394 http://dx.doi.org/10.3390/polym15071781 |
Sumario: | A simple procedure of calcination under an Ar atmosphere has been successfully applied to create a covalent triazine framework bearing pyridine-type carbonitride moieties (PCN@CTF). The appending of PCN on the CTF led to visible light absorption at up to 600 nm in the UV/Vis diffuse-reflectance spectra. Photoluminescence and electrochemical impedance spectroscopy have been applied to clarify how modification of the CTF with PCN enhanced the separation efficiency of photoexcited charge carriers. An optimized 1%PCN@CTF sample showed the highest photocatalytic hydrogen evolution reaction (HER) rate of 170.2 ± 2.3 μmol g(−1)·h(−1), 3.9 times faster than that over the pristine CTF. The apparent quantum efficiency of the HER peaked at (7.57 ± 0.10)% at 490 nm. This representative 1% PCN@CTF sample maintained continuous function for at least 15 h. This work provides new guidance for modification with PCN materials as a means of obtaining high photocatalytic efficiency and sheds light on the effect of appended pyridine rings on a CTF. |
---|