Cargando…
Efficient Authentication Scheme for 5G-Enabled Vehicular Networks Using Fog Computing
Several researchers have proposed secure authentication techniques for addressing privacy and security concerns in the fifth-generation (5G)-enabled vehicle networks. To verify vehicles, however, these conditional privacy-preserving authentication (CPPA) systems required a roadside unit, an expensiv...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10098888/ https://www.ncbi.nlm.nih.gov/pubmed/37050601 http://dx.doi.org/10.3390/s23073543 |
Sumario: | Several researchers have proposed secure authentication techniques for addressing privacy and security concerns in the fifth-generation (5G)-enabled vehicle networks. To verify vehicles, however, these conditional privacy-preserving authentication (CPPA) systems required a roadside unit, an expensive component of vehicular networks. Moreover, these CPPA systems incur exceptionally high communication and processing costs. This study proposes a CPPA method based on fog computing (FC), as a solution for these issues in 5G-enabled vehicle networks. In our proposed FC-CPPA method, a fog server is used to establish a set of public anonymity identities and their corresponding signature keys, which are then preloaded into each authentic vehicle. We guarantee the security of the proposed FC-CPPA method in the context of a random oracle. Our solutions are not only compliant with confidentiality and security standards, but also resistant to a variety of threats. The communication costs of the proposal are only 84 bytes, while the computation costs are [Formula: see text] , [Formula: see text] to sign and verify messages. Comparing our strategy to similar ones reveals that it saves time and money on communication and computing during the performance evaluation phase. |
---|