Cargando…
Machine Learning Analysis of Hyperspectral Images of Damaged Wheat Kernels
Fusarium head blight (FHB) is a disease of small grains caused by the fungus Fusarium graminearum. In this study, we explored the use of hyperspectral imaging (HSI) to evaluate the damage caused by FHB in wheat kernels. We evaluated the use of HSI for disease classification and correlated the damage...
Autores principales: | Dhakal, Kshitiz, Sivaramakrishnan, Upasana, Zhang, Xuemei, Belay, Kassaye, Oakes, Joseph, Wei, Xing, Li, Song |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10098892/ https://www.ncbi.nlm.nih.gov/pubmed/37050581 http://dx.doi.org/10.3390/s23073523 |
Ejemplares similares
-
Protein content prediction in single wheat kernels using hyperspectral imaging
por: Caporaso, Nicola, et al.
Publicado: (2018) -
Assessment of Fusarium Infection and Mycotoxin Contamination of Wheat Kernels and Flour Using Hyperspectral Imaging
por: Alisaac, Elias, et al.
Publicado: (2019) -
Hyperspectral Monitoring of Powdery Mildew Disease Severity in Wheat Based on Machine Learning
por: Feng, Zi-Heng, et al.
Publicado: (2022) -
Combined Kernel-Based BDT-SMO Classification of Hyperspectral Fused Images
por: Huang, Fenghua, et al.
Publicado: (2014) -
Staging of Skin Cancer Based on Hyperspectral Microscopic Imaging and Machine Learning
por: Liu, Lixin, et al.
Publicado: (2022)