Cargando…
Robust Cost Volume Generation Method for Dense Stereo Matching in Endoscopic Scenarios
Stereo matching in binocular endoscopic scenarios is difficult due to the radiometric distortion caused by restricted light conditions. Traditional matching algorithms suffer from poor performance in challenging areas, while deep learning ones are limited by their generalizability and complexity. We...
Autores principales: | Jiang, Yucheng, Dong, Zehua, Mai, Songping |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10098972/ https://www.ncbi.nlm.nih.gov/pubmed/37050489 http://dx.doi.org/10.3390/s23073427 |
Ejemplares similares
-
Efficient Multi-Scale Stereo-Matching Network Using Adaptive Cost Volume Filtering
por: Jeon, Suyeon, et al.
Publicado: (2022) -
Reliable Fusion of Stereo Matching and Depth Sensor for High Quality Dense Depth Maps
por: Liu, Jing, et al.
Publicado: (2015) -
A Comparison and Evaluation of Stereo Matching on Active Stereo Images
por: Jang, Mingyu, et al.
Publicado: (2022) -
Field phenotyping of grapevine growth using dense stereo reconstruction
por: Klodt, Maria, et al.
Publicado: (2015) -
Image restoration methods as preprocessing tools in digital stereo matching
por: Fallvik, J O
Publicado: (1985)