Cargando…
MSFFAL: Few-Shot Object Detection via Multi-Scale Feature Fusion and Attentive Learning
Few-shot object detection (FSOD) is proposed to solve the application problem of traditional detectors in scenarios lacking training samples. The meta-learning methods have attracted the researchers’ attention for their excellent generalization performance. They usually select the same class of supp...
Autores principales: | Zhang, Tianzhao, Sun, Ruoxi, Wan, Yong, Zhang, Fuping, Wei, Jianming |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10099036/ https://www.ncbi.nlm.nih.gov/pubmed/37050671 http://dx.doi.org/10.3390/s23073609 |
Ejemplares similares
-
Few-shot learning approach with multi-scale feature fusion and attention for plant disease recognition
por: Lin, Hong, et al.
Publicado: (2022) -
A Multi-Layer Feature Fusion Method for Few-Shot Image Classification
por: Gomes, Jacó C., et al.
Publicado: (2023) -
Few-shot pulse wave contour classification based on multi-scale feature extraction
por: Lu, Peng, et al.
Publicado: (2021) -
Accurate few-shot object counting with Hough matching feature enhancement
por: He, Zhiquan, et al.
Publicado: (2023) -
Visual Object Tracking Algorithm Based on Biological Visual Information Features and Few-Shot Learning
por: Zhang, Dawei, et al.
Publicado: (2022)