Cargando…

Dynamic Obstacle Avoidance for USVs Using Cross-Domain Deep Reinforcement Learning and Neural Network Model Predictive Controller

This work presents a framework that allows Unmanned Surface Vehicles (USVs) to avoid dynamic obstacles through initial training on an Unmanned Ground Vehicle (UGV) and cross-domain retraining on a USV. This is achieved by integrating a Deep Reinforcement Learning (DRL) agent that generates high-leve...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Jianwen, Chavez-Galaviz, Jalil, Azizzadenesheli, Kamyar, Mahmoudian, Nina
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10099039/
https://www.ncbi.nlm.nih.gov/pubmed/37050633
http://dx.doi.org/10.3390/s23073572
Descripción
Sumario:This work presents a framework that allows Unmanned Surface Vehicles (USVs) to avoid dynamic obstacles through initial training on an Unmanned Ground Vehicle (UGV) and cross-domain retraining on a USV. This is achieved by integrating a Deep Reinforcement Learning (DRL) agent that generates high-level control commands and leveraging a neural network based model predictive controller (NN-MPC) to reach target waypoints and reject disturbances. A Deep Q Network (DQN) utilized in this framework is trained in a ground environment using a Turtlebot robot and retrained in a water environment using the BREAM USV in the Gazebo simulator to avoid dynamic obstacles. The network is then validated in both simulation and real-world tests. The cross-domain learning largely decreases the training time ([Formula: see text]) and increases the obstacle avoidance performance (70 more reward points) compared to pure water domain training. This methodology shows that it is possible to leverage the data-rich and accessible ground environments to train DRL agent in data-poor and difficult-to-access marine environments. This will allow rapid and iterative agent development without further training due to the change in environment or vehicle dynamics.