Cargando…
Dynamic Obstacle Avoidance for USVs Using Cross-Domain Deep Reinforcement Learning and Neural Network Model Predictive Controller
This work presents a framework that allows Unmanned Surface Vehicles (USVs) to avoid dynamic obstacles through initial training on an Unmanned Ground Vehicle (UGV) and cross-domain retraining on a USV. This is achieved by integrating a Deep Reinforcement Learning (DRL) agent that generates high-leve...
Autores principales: | Li, Jianwen, Chavez-Galaviz, Jalil, Azizzadenesheli, Kamyar, Mahmoudian, Nina |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10099039/ https://www.ncbi.nlm.nih.gov/pubmed/37050633 http://dx.doi.org/10.3390/s23073572 |
Ejemplares similares
-
ROSEBUD: A Deep Fluvial Segmentation Dataset for Monocular Vision-Based River Navigation and Obstacle Avoidance
por: Lambert, Reeve, et al.
Publicado: (2022) -
Dynamic Navigation and Area Assignment of Multiple USVs Based on Multi-Agent Deep Reinforcement Learning
por: Wen, Jiayi, et al.
Publicado: (2022) -
A Novel Reinforcement Learning Collision Avoidance Algorithm for USVs Based on Maneuvering Characteristics and COLREGs
por: Fan, Yunsheng, et al.
Publicado: (2022) -
Optimized Dynamic Collision Avoidance Algorithm for USV Path Planning
por: Zhu, Hongyang, et al.
Publicado: (2023) -
Robust ASV Navigation Through Ground to Water Cross-Domain Deep Reinforcement Learning
por: Lambert, Reeve, et al.
Publicado: (2021)