Cargando…
SpectralMAE: Spectral Masked Autoencoder for Hyperspectral Remote Sensing Image Reconstruction
Accurate hyperspectral remote sensing information is essential for feature identification and detection. Nevertheless, the hyperspectral imaging mechanism poses challenges in balancing the trade-off between spatial and spectral resolution. Hardware improvements are cost-intensive and depend on stric...
Autores principales: | Zhu, Lingxuan, Wu, Jiaji, Biao, Wang, Liao, Yi, Gu, Dandan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10099040/ https://www.ncbi.nlm.nih.gov/pubmed/37050788 http://dx.doi.org/10.3390/s23073728 |
Ejemplares similares
-
Spectral-spatial classification of hyperspectral remote sensing images
por: Benediktsson, Jon Atli, et al.
Publicado: (2015) -
Spatial Spectral Band Selection for Enhanced Hyperspectral Remote Sensing Classification Applications
por: Torres, Ruben Moya, et al.
Publicado: (2020) -
Spectral Unmixing of Hyperspectral Remote Sensing Imagery via Preserving the Intrinsic Structure Invariant
por: Shao, Yang, et al.
Publicado: (2018) -
Correlating species and spectral diversities using hyperspectral remote sensing in early‐successional fields
por: Aneece, Itiya P., et al.
Publicado: (2017) -
Distributed Compressed Hyperspectral Sensing Imaging Based on Spectral Unmixing
por: Wang, Zhongliang, et al.
Publicado: (2020)