Cargando…

ICEP: An Instrumented Cycling Ergometer Platform for the Assessment of Advanced FES Strategies

Background: Functional electrical stimulation (FES) cycling has seen an upsurge in interest over the last decade. The present study describes the novel instrumented cycling ergometer platform designed to assess the efficiency of electrical stimulation strategies. The capabilities of the platform are...

Descripción completa

Detalles Bibliográficos
Autores principales: Kajganic, Petar, Bergeron, Vance, Metani, Amine
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10099061/
https://www.ncbi.nlm.nih.gov/pubmed/37050582
http://dx.doi.org/10.3390/s23073522
Descripción
Sumario:Background: Functional electrical stimulation (FES) cycling has seen an upsurge in interest over the last decade. The present study describes the novel instrumented cycling ergometer platform designed to assess the efficiency of electrical stimulation strategies. The capabilities of the platform are showcased in an example determining the adequate stimulation patterns for reproducing a cycling movement of the paralyzed legs of a spinal cord injury (SCI) subject. Methods: Two procedures have been followed to determine the stimulation patterns: (1) using the EMG recordings of the able-bodied subject; (2) using the recordings of the forces produced by the SCI subject’s stimulated muscles. Results: the stimulation pattern derived from the SCI subject’s force output was found to produce 14% more power than the EMG-derived stimulation pattern. Conclusions: the cycling platform proved useful for determining and assessing stimulation patterns, and it can be used to further investigate advanced stimulation strategies.