Cargando…
CLIP-Based Adaptive Graph Attention Network for Large-Scale Unsupervised Multi-Modal Hashing Retrieval
With the proliferation of multi-modal data generated by various sensors, unsupervised multi-modal hashing retrieval has been extensively studied due to its advantages in storage, retrieval efficiency, and label independence. However, there are still two obstacles to existing unsupervised methods: (1...
Autores principales: | Li, Yewen, Ge, Mingyuan, Li, Mingyong, Li, Tiansong, Xiang, Sen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10099083/ https://www.ncbi.nlm.nih.gov/pubmed/37050499 http://dx.doi.org/10.3390/s23073439 |
Ejemplares similares
-
Object-Level Visual-Text Correlation Graph Hashing for Unsupervised Cross-Modal Retrieval
por: Shi, Ge, et al.
Publicado: (2022) -
Deep Unsupervised Hashing for Large-Scale Cross-Modal Retrieval Using Knowledge Distillation Model
por: Li, Mingyong, et al.
Publicado: (2021) -
Deep Semantic-Preserving Reconstruction Hashing for Unsupervised Cross-Modal Retrieval
por: Cheng, Shuli, et al.
Publicado: (2020) -
Semantics-Reconstructing Hashing for Cross-Modal Retrieval
por: Zhang, Peng-Fei, et al.
Publicado: (2020) -
Cross-Modal Contrastive Hashing Retrieval for Infrared Video and EEG
por: Han, Jianan, et al.
Publicado: (2022)