Cargando…
Machine Learning Assists IoT Localization: A Review of Current Challenges and Future Trends
The widespread use of the internet and the exponential growth in small hardware diversity enable the development of Internet of things (IoT)-based localization systems. We review machine-learning-based approaches for IoT localization systems in this paper. Because of their high prediction accuracy,...
Autores principales: | Shahbazian, Reza, Macrina, Giusy, Scalzo, Edoardo, Guerriero, Francesca |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10099106/ https://www.ncbi.nlm.nih.gov/pubmed/37050611 http://dx.doi.org/10.3390/s23073551 |
Ejemplares similares
-
Wireless Positioning in IoT: A Look at Current and Future Trends
por: Figueiredo e Silva, Pedro, et al.
Publicado: (2018) -
Trends and Challenges in AIoT/IIoT/IoT Implementation
por: Hou, Kun Mean, et al.
Publicado: (2023) -
Machine Learning for Authentication and Authorization in IoT: Taxonomy, Challenges and Future Research Direction
por: Istiaque Ahmed, Kazi, et al.
Publicado: (2021) -
Challenges in Resource-Constrained IoT Devices: Energy and Communication as Critical Success Factors for Future IoT Deployment
por: Pereira, Felisberto, et al.
Publicado: (2020) -
IoT technical challenges and solutions
por: Pal, Arpan, et al.
Publicado: (2016)