Cargando…

Electron and Neutron Beam Irradiation Effects in Homogeneous and Nanostructured Oxides

[Image: see text] Oxide-based materials have a variety of applications in chemical sensing and photocatalysis, thin-film transistors, complex-oxide field-effect transistors, nonvolatile memories, resistive switching, energy conversion, topological oxide electronics, and many others. The radiation re...

Descripción completa

Detalles Bibliográficos
Autor principal: Nesheva, Diana
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2023
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10099133/
https://www.ncbi.nlm.nih.gov/pubmed/37065047
http://dx.doi.org/10.1021/acsomega.3c00486
_version_ 1785024984950767616
author Nesheva, Diana
author_facet Nesheva, Diana
author_sort Nesheva, Diana
collection PubMed
description [Image: see text] Oxide-based materials have a variety of applications in chemical sensing and photocatalysis, thin-film transistors, complex-oxide field-effect transistors, nonvolatile memories, resistive switching, energy conversion, topological oxide electronics, and many others. The radiation resistance of these materials in such devices plays an important role in device operation in radiation environment, and this attracts much attention in the research area. In spite of damage in a number of cases high-energy particles may have a beneficial effect on the target. In this mini-review article examples of both creation of defects and beneficial changes in the structure and properties of homogeneous and nanostructured oxides caused by high-energy electron and neutron irradiation are given by considering some recently published results. First, the attention is turned to ionizing and displacement effects of electron and neutron irradiation in homogeneous bulk and thin-film oxides reported in the literature. Then, the effect of electron and neutron irradiation on nanostructured oxides and semiconductor nanoparticles embedded in an oxide matrix is regarded. Considerable attention is paid to silicon oxide layers since they are widely used in microelectronic products, which are among the most manufactured devices in human history. Processes of irradiation-induced lattice rearrangement, compositional changes, growth of nanoparticles and their size reduction, creation of point defects and their complexes, electron–hole generation, and charge trapping are discussed.
format Online
Article
Text
id pubmed-10099133
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-100991332023-04-14 Electron and Neutron Beam Irradiation Effects in Homogeneous and Nanostructured Oxides Nesheva, Diana ACS Omega [Image: see text] Oxide-based materials have a variety of applications in chemical sensing and photocatalysis, thin-film transistors, complex-oxide field-effect transistors, nonvolatile memories, resistive switching, energy conversion, topological oxide electronics, and many others. The radiation resistance of these materials in such devices plays an important role in device operation in radiation environment, and this attracts much attention in the research area. In spite of damage in a number of cases high-energy particles may have a beneficial effect on the target. In this mini-review article examples of both creation of defects and beneficial changes in the structure and properties of homogeneous and nanostructured oxides caused by high-energy electron and neutron irradiation are given by considering some recently published results. First, the attention is turned to ionizing and displacement effects of electron and neutron irradiation in homogeneous bulk and thin-film oxides reported in the literature. Then, the effect of electron and neutron irradiation on nanostructured oxides and semiconductor nanoparticles embedded in an oxide matrix is regarded. Considerable attention is paid to silicon oxide layers since they are widely used in microelectronic products, which are among the most manufactured devices in human history. Processes of irradiation-induced lattice rearrangement, compositional changes, growth of nanoparticles and their size reduction, creation of point defects and their complexes, electron–hole generation, and charge trapping are discussed. American Chemical Society 2023-03-29 /pmc/articles/PMC10099133/ /pubmed/37065047 http://dx.doi.org/10.1021/acsomega.3c00486 Text en © 2023 The Author. Published by American Chemical Society https://creativecommons.org/licenses/by-nc-nd/4.0/Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Nesheva, Diana
Electron and Neutron Beam Irradiation Effects in Homogeneous and Nanostructured Oxides
title Electron and Neutron Beam Irradiation Effects in Homogeneous and Nanostructured Oxides
title_full Electron and Neutron Beam Irradiation Effects in Homogeneous and Nanostructured Oxides
title_fullStr Electron and Neutron Beam Irradiation Effects in Homogeneous and Nanostructured Oxides
title_full_unstemmed Electron and Neutron Beam Irradiation Effects in Homogeneous and Nanostructured Oxides
title_short Electron and Neutron Beam Irradiation Effects in Homogeneous and Nanostructured Oxides
title_sort electron and neutron beam irradiation effects in homogeneous and nanostructured oxides
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10099133/
https://www.ncbi.nlm.nih.gov/pubmed/37065047
http://dx.doi.org/10.1021/acsomega.3c00486
work_keys_str_mv AT neshevadiana electronandneutronbeamirradiationeffectsinhomogeneousandnanostructuredoxides