Cargando…
Triphenylamine-Modified Cinnamaldehyde Derivate as a Molecular Sensor for Viscosity Detection in Liquids
[Image: see text] Liquid safety is considered a serious public health problem; a convenient and effective viscosity determination method has been regarded as one of the powerful means to detect liquid safety. Herein, one kind of triphenylamine-modified cinnamaldehyde-based fluorescent sensor (3-(4′-...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10099141/ https://www.ncbi.nlm.nih.gov/pubmed/37065079 http://dx.doi.org/10.1021/acsomega.3c00488 |
_version_ | 1785024986991296512 |
---|---|
author | Xu, Lingfeng Huang, Yanrong Peng, Hui Xu, Wenyan Yi, Xiuguang He, Genhe |
author_facet | Xu, Lingfeng Huang, Yanrong Peng, Hui Xu, Wenyan Yi, Xiuguang He, Genhe |
author_sort | Xu, Lingfeng |
collection | PubMed |
description | [Image: see text] Liquid safety is considered a serious public health problem; a convenient and effective viscosity determination method has been regarded as one of the powerful means to detect liquid safety. Herein, one kind of triphenylamine-modified cinnamaldehyde-based fluorescent sensor (3-(4′-(diphenylamino)-[1,1′-biphenyl]-4-yl)acrylaldehyde (DPABA)) has been developed for sensing viscosity fluctuations in a liquid system, where a cinnamaldehyde derivative was extracted from one kind of natural plant cinnamon and acted as an acceptor, which has been combined with a triphenylamine derivate via the Suzuki coupling reaction within one facile step. Twisted intramolecular charge transfer (TICT) was observed, and the rotation could be restricted in the high-viscosity microenvironment; thus, the fluorescent signal was released at 548 nm. Featured with a larger Stokes shift (223.8 nm in water, 145.0 nm in glycerol), high adaptability, sensitivity, selectivity, and good photostability, the capability of high signal-to-noise ratio sensing was achieved. Importantly, this sensor DPABA has achieved noninvasively identifying thickening efficiency investigation, and viscosity fluctuations during the liquid deterioration program have been screened as well. We believed that this unique strategy can accelerate intelligent molecular platforms toward liquid quality and safety inspection. |
format | Online Article Text |
id | pubmed-10099141 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-100991412023-04-14 Triphenylamine-Modified Cinnamaldehyde Derivate as a Molecular Sensor for Viscosity Detection in Liquids Xu, Lingfeng Huang, Yanrong Peng, Hui Xu, Wenyan Yi, Xiuguang He, Genhe ACS Omega [Image: see text] Liquid safety is considered a serious public health problem; a convenient and effective viscosity determination method has been regarded as one of the powerful means to detect liquid safety. Herein, one kind of triphenylamine-modified cinnamaldehyde-based fluorescent sensor (3-(4′-(diphenylamino)-[1,1′-biphenyl]-4-yl)acrylaldehyde (DPABA)) has been developed for sensing viscosity fluctuations in a liquid system, where a cinnamaldehyde derivative was extracted from one kind of natural plant cinnamon and acted as an acceptor, which has been combined with a triphenylamine derivate via the Suzuki coupling reaction within one facile step. Twisted intramolecular charge transfer (TICT) was observed, and the rotation could be restricted in the high-viscosity microenvironment; thus, the fluorescent signal was released at 548 nm. Featured with a larger Stokes shift (223.8 nm in water, 145.0 nm in glycerol), high adaptability, sensitivity, selectivity, and good photostability, the capability of high signal-to-noise ratio sensing was achieved. Importantly, this sensor DPABA has achieved noninvasively identifying thickening efficiency investigation, and viscosity fluctuations during the liquid deterioration program have been screened as well. We believed that this unique strategy can accelerate intelligent molecular platforms toward liquid quality and safety inspection. American Chemical Society 2023-04-03 /pmc/articles/PMC10099141/ /pubmed/37065079 http://dx.doi.org/10.1021/acsomega.3c00488 Text en © 2023 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by-nc-nd/4.0/Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Xu, Lingfeng Huang, Yanrong Peng, Hui Xu, Wenyan Yi, Xiuguang He, Genhe Triphenylamine-Modified Cinnamaldehyde Derivate as a Molecular Sensor for Viscosity Detection in Liquids |
title | Triphenylamine-Modified
Cinnamaldehyde Derivate as
a Molecular Sensor for Viscosity Detection in Liquids |
title_full | Triphenylamine-Modified
Cinnamaldehyde Derivate as
a Molecular Sensor for Viscosity Detection in Liquids |
title_fullStr | Triphenylamine-Modified
Cinnamaldehyde Derivate as
a Molecular Sensor for Viscosity Detection in Liquids |
title_full_unstemmed | Triphenylamine-Modified
Cinnamaldehyde Derivate as
a Molecular Sensor for Viscosity Detection in Liquids |
title_short | Triphenylamine-Modified
Cinnamaldehyde Derivate as
a Molecular Sensor for Viscosity Detection in Liquids |
title_sort | triphenylamine-modified
cinnamaldehyde derivate as
a molecular sensor for viscosity detection in liquids |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10099141/ https://www.ncbi.nlm.nih.gov/pubmed/37065079 http://dx.doi.org/10.1021/acsomega.3c00488 |
work_keys_str_mv | AT xulingfeng triphenylaminemodifiedcinnamaldehydederivateasamolecularsensorforviscositydetectioninliquids AT huangyanrong triphenylaminemodifiedcinnamaldehydederivateasamolecularsensorforviscositydetectioninliquids AT penghui triphenylaminemodifiedcinnamaldehydederivateasamolecularsensorforviscositydetectioninliquids AT xuwenyan triphenylaminemodifiedcinnamaldehydederivateasamolecularsensorforviscositydetectioninliquids AT yixiuguang triphenylaminemodifiedcinnamaldehydederivateasamolecularsensorforviscositydetectioninliquids AT hegenhe triphenylaminemodifiedcinnamaldehydederivateasamolecularsensorforviscositydetectioninliquids |