Cargando…
Graph Convolutional Network Using Adaptive Neighborhood Laplacian Matrix for Hyperspectral Images with Application to Rice Seed Image Classification
Graph convolutional neural network architectures combine feature extraction and convolutional layers for hyperspectral image classification. An adaptive neighborhood aggregation method based on statistical variance integrating the spatial information along with the spectral signature of the pixels i...
Autores principales: | Orozco, Jairo, Manian, Vidya, Alfaro, Estefania, Walia, Harkamal, Dhatt, Balpreet K. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10099153/ https://www.ncbi.nlm.nih.gov/pubmed/37050573 http://dx.doi.org/10.3390/s23073515 |
Ejemplares similares
-
A Deep Learning Framework for Processing and Classification of Hyperspectral Rice Seed Images Grown under High Day and Night Temperatures
por: Díaz-Martínez, Víctor, et al.
Publicado: (2023) -
Hyperspectral Image Labeling and Classification Using an Ensemble Semi-Supervised Machine Learning Approach
por: Manian, Vidya, et al.
Publicado: (2022) -
SeedExtractor: An Open-Source GUI for Seed Image Analysis
por: Zhu, Feiyu, et al.
Publicado: (2021) -
HyperSeed: An End-to-End Method to Process Hyperspectral Images of Seeds
por: Gao, Tian, et al.
Publicado: (2021) -
Metabolic Dynamics of Developing Rice Seeds Under High Night-Time Temperature Stress
por: Dhatt, Balpreet K., et al.
Publicado: (2019)