Cargando…
Chained Deep Learning Using Generalized Cross-Entropy for Multiple Annotators Classification
Supervised learning requires the accurate labeling of instances, usually provided by an expert. Crowdsourcing platforms offer a practical and cost-effective alternative for large datasets when individual annotation is impractical. In addition, these platforms gather labels from multiple labelers. St...
Autores principales: | Triana-Martinez, Jenniffer Carolina, Gil-González, Julian, Fernandez-Gallego, Jose A., Álvarez-Meza, Andrés Marino, Castellanos-Dominguez, Cesar German |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10099209/ https://www.ncbi.nlm.nih.gov/pubmed/37050578 http://dx.doi.org/10.3390/s23073518 |
Ejemplares similares
-
KCS-FCnet: Kernel Cross-Spectral Functional Connectivity Network for EEG-Based Motor Imagery Classification
por: García-Murillo, Daniel Guillermo, et al.
Publicado: (2023) -
Deep Neural Regression Prediction of Motor Imagery Skills Using EEG Functional Connectivity Indicators
por: Caicedo-Acosta, Julian, et al.
Publicado: (2021) -
An Enhanced Joint Hilbert Embedding-Based Metric to Support Mocap Data Classification with Preserved Interpretability
por: Valencia-Marin, Cristian Kaori, et al.
Publicado: (2021) -
Deep and Wide Transfer Learning with Kernel Matching for Pooling Data from Electroencephalography and Psychological Questionnaires
por: Collazos-Huertas, Diego Fabian, et al.
Publicado: (2021) -
Posthoc Interpretability of Neural Responses by Grouping Subject Motor Imagery Skills Using CNN-Based Connectivity
por: Collazos-Huertas, Diego Fabian, et al.
Publicado: (2023)