Cargando…
High-Resolution Swin Transformer for Automatic Medical Image Segmentation
The resolution of feature maps is a critical factor for accurate medical image segmentation. Most of the existing Transformer-based networks for medical image segmentation adopt a U-Net-like architecture, which contains an encoder that converts the high-resolution input image into low-resolution fea...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10099222/ https://www.ncbi.nlm.nih.gov/pubmed/37050479 http://dx.doi.org/10.3390/s23073420 |
Sumario: | The resolution of feature maps is a critical factor for accurate medical image segmentation. Most of the existing Transformer-based networks for medical image segmentation adopt a U-Net-like architecture, which contains an encoder that converts the high-resolution input image into low-resolution feature maps using a sequence of Transformer blocks and a decoder that gradually generates high-resolution representations from low-resolution feature maps. However, the procedure of recovering high-resolution representations from low-resolution representations may harm the spatial precision of the generated segmentation masks. Unlike previous studies, in this study, we utilized the high-resolution network (HRNet) design style by replacing the convolutional layers with Transformer blocks, continuously exchanging feature map information with different resolutions generated by the Transformer blocks. The proposed Transformer-based network is named the high-resolution Swin Transformer network (HRSTNet). Extensive experiments demonstrated that the HRSTNet can achieve performance comparable with that of the state-of-the-art Transformer-based U-Net-like architecture on the 2021 Brain Tumor Segmentation dataset, the Medical Segmentation Decathlon’s liver dataset, and the BTCV multi-organ segmentation dataset. |
---|