Cargando…
High-Resolution Swin Transformer for Automatic Medical Image Segmentation
The resolution of feature maps is a critical factor for accurate medical image segmentation. Most of the existing Transformer-based networks for medical image segmentation adopt a U-Net-like architecture, which contains an encoder that converts the high-resolution input image into low-resolution fea...
Autores principales: | Wei, Chen, Ren, Shenghan, Guo, Kaitai, Hu, Haihong, Liang, Jimin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10099222/ https://www.ncbi.nlm.nih.gov/pubmed/37050479 http://dx.doi.org/10.3390/s23073420 |
Ejemplares similares
-
Super-Resolution Swin Transformer and Attention Network for Medical CT Imaging
por: Hu, Jianhua, et al.
Publicado: (2022) -
COVID-19 CT image segmentation method based on swin transformer
por: Sun, Weiwei, et al.
Publicado: (2022) -
SwinBTS: A Method for 3D Multimodal Brain Tumor Segmentation Using Swin Transformer
por: Jiang, Yun, et al.
Publicado: (2022) -
Swin-MFA: A Multi-Modal Fusion Attention Network Based on Swin-Transformer for Low-Light Image Human Segmentation
por: Yi, Xunpeng, et al.
Publicado: (2022) -
S-Swin Transformer: simplified Swin Transformer model for offline handwritten Chinese character recognition
por: Dan, Yongping, et al.
Publicado: (2022)