Cargando…
Cluster Validity Index for Uncertain Data Based on a Probabilistic Distance Measure in Feature Space
Cluster validity indices (CVIs) for evaluating the result of the optimal number of clusters are critical measures in clustering problems. Most CVIs are designed for typical data-type objects called certain data objects. Certain data objects only have a singular value and include no uncertainty, so t...
Autores principales: | Ko, Changwan, Baek, Jaeseung, Tavakkol, Behnam, Jeong, Young-Seon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10099331/ https://www.ncbi.nlm.nih.gov/pubmed/37050769 http://dx.doi.org/10.3390/s23073708 |
Ejemplares similares
-
Advances in probabilistic databases for uncertain information management
por: Ma, Zongmin, et al.
Publicado: (2013) -
Uncertain Data Clustering-Based Distance Estimation in Wireless Sensor Networks
por: Luo, Qinghua, et al.
Publicado: (2014) -
Probabilistic logic networks: a comprehensive framework for uncertain inference
por: Goertzel, Ben, et al.
Publicado: (2008) -
Probabilistic Distances Between Trees
por: Garba, Maryam K, et al.
Publicado: (2018) -
TODIM-VIKOR method based on hybrid weighted distance under probabilistic uncertain linguistic information and its application in medical logistics center site selection
por: Lei, Fan, et al.
Publicado: (2023)