Cargando…

Automatic Detection of Microaneurysms in Fundus Images Using an Ensemble-Based Segmentation Method

In this study, a novel method for automatic microaneurysm detection in color fundus images is presented. The proposed method is based on three main steps: (1) image breakdown to smaller image patches, (2) inference to segmentation models, and (3) reconstruction of the predicted segmentation map from...

Descripción completa

Detalles Bibliográficos
Autores principales: Raudonis, Vidas, Kairys, Arturas, Verkauskiene, Rasa, Sokolovska, Jelizaveta, Petrovski, Goran, Balciuniene, Vilma Jurate, Volke, Vallo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10099354/
https://www.ncbi.nlm.nih.gov/pubmed/37050491
http://dx.doi.org/10.3390/s23073431
_version_ 1785025033386590208
author Raudonis, Vidas
Kairys, Arturas
Verkauskiene, Rasa
Sokolovska, Jelizaveta
Petrovski, Goran
Balciuniene, Vilma Jurate
Volke, Vallo
author_facet Raudonis, Vidas
Kairys, Arturas
Verkauskiene, Rasa
Sokolovska, Jelizaveta
Petrovski, Goran
Balciuniene, Vilma Jurate
Volke, Vallo
author_sort Raudonis, Vidas
collection PubMed
description In this study, a novel method for automatic microaneurysm detection in color fundus images is presented. The proposed method is based on three main steps: (1) image breakdown to smaller image patches, (2) inference to segmentation models, and (3) reconstruction of the predicted segmentation map from output patches. The proposed segmentation method is based on an ensemble of three individual deep networks, such as U-Net, ResNet34-UNet and UNet++. The performance evaluation is based on the calculation of the Dice score and [Formula: see text] values. The ensemble-based model achieved higher Dice score (0.95) and [Formula: see text] (0.91) values compared to other network architectures. The proposed ensemble-based model demonstrates the high practical application potential for detection of early-stage diabetic retinopathy in color fundus images.
format Online
Article
Text
id pubmed-10099354
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-100993542023-04-14 Automatic Detection of Microaneurysms in Fundus Images Using an Ensemble-Based Segmentation Method Raudonis, Vidas Kairys, Arturas Verkauskiene, Rasa Sokolovska, Jelizaveta Petrovski, Goran Balciuniene, Vilma Jurate Volke, Vallo Sensors (Basel) Article In this study, a novel method for automatic microaneurysm detection in color fundus images is presented. The proposed method is based on three main steps: (1) image breakdown to smaller image patches, (2) inference to segmentation models, and (3) reconstruction of the predicted segmentation map from output patches. The proposed segmentation method is based on an ensemble of three individual deep networks, such as U-Net, ResNet34-UNet and UNet++. The performance evaluation is based on the calculation of the Dice score and [Formula: see text] values. The ensemble-based model achieved higher Dice score (0.95) and [Formula: see text] (0.91) values compared to other network architectures. The proposed ensemble-based model demonstrates the high practical application potential for detection of early-stage diabetic retinopathy in color fundus images. MDPI 2023-03-24 /pmc/articles/PMC10099354/ /pubmed/37050491 http://dx.doi.org/10.3390/s23073431 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Raudonis, Vidas
Kairys, Arturas
Verkauskiene, Rasa
Sokolovska, Jelizaveta
Petrovski, Goran
Balciuniene, Vilma Jurate
Volke, Vallo
Automatic Detection of Microaneurysms in Fundus Images Using an Ensemble-Based Segmentation Method
title Automatic Detection of Microaneurysms in Fundus Images Using an Ensemble-Based Segmentation Method
title_full Automatic Detection of Microaneurysms in Fundus Images Using an Ensemble-Based Segmentation Method
title_fullStr Automatic Detection of Microaneurysms in Fundus Images Using an Ensemble-Based Segmentation Method
title_full_unstemmed Automatic Detection of Microaneurysms in Fundus Images Using an Ensemble-Based Segmentation Method
title_short Automatic Detection of Microaneurysms in Fundus Images Using an Ensemble-Based Segmentation Method
title_sort automatic detection of microaneurysms in fundus images using an ensemble-based segmentation method
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10099354/
https://www.ncbi.nlm.nih.gov/pubmed/37050491
http://dx.doi.org/10.3390/s23073431
work_keys_str_mv AT raudonisvidas automaticdetectionofmicroaneurysmsinfundusimagesusinganensemblebasedsegmentationmethod
AT kairysarturas automaticdetectionofmicroaneurysmsinfundusimagesusinganensemblebasedsegmentationmethod
AT verkauskienerasa automaticdetectionofmicroaneurysmsinfundusimagesusinganensemblebasedsegmentationmethod
AT sokolovskajelizaveta automaticdetectionofmicroaneurysmsinfundusimagesusinganensemblebasedsegmentationmethod
AT petrovskigoran automaticdetectionofmicroaneurysmsinfundusimagesusinganensemblebasedsegmentationmethod
AT balciunienevilmajurate automaticdetectionofmicroaneurysmsinfundusimagesusinganensemblebasedsegmentationmethod
AT volkevallo automaticdetectionofmicroaneurysmsinfundusimagesusinganensemblebasedsegmentationmethod