Cargando…

Hybrid pedicle screw and modified cortical bone trajectory technique in transforaminal lumbar interbody fusion at L4-L5 segment: finite element analysis

BACKGROUND: Investigate the biomechanical properties of the hybrid fixation technique with bilateral pedicle screw (BPS) and bilateral modified cortical bone trajectory screw (BMCS) in L4-L5 transforaminal lumbar interbody fusion (TLIF). METHODS:  Three finite element (FE) models of the L1-S1 lumbar...

Descripción completa

Detalles Bibliográficos
Autores principales: Kahaer, Alafate, Zhang, Rui, Wang, Yixi, Luan, Haopeng, Maimaiti, Abulikemu, Liu, Dongshan, Shi, Wenjie, Zhang, Tao, Guo, Hailong, Rexiti, Paerhati
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10099636/
https://www.ncbi.nlm.nih.gov/pubmed/37055739
http://dx.doi.org/10.1186/s12891-023-06385-y
_version_ 1785025095986577408
author Kahaer, Alafate
Zhang, Rui
Wang, Yixi
Luan, Haopeng
Maimaiti, Abulikemu
Liu, Dongshan
Shi, Wenjie
Zhang, Tao
Guo, Hailong
Rexiti, Paerhati
author_facet Kahaer, Alafate
Zhang, Rui
Wang, Yixi
Luan, Haopeng
Maimaiti, Abulikemu
Liu, Dongshan
Shi, Wenjie
Zhang, Tao
Guo, Hailong
Rexiti, Paerhati
author_sort Kahaer, Alafate
collection PubMed
description BACKGROUND: Investigate the biomechanical properties of the hybrid fixation technique with bilateral pedicle screw (BPS) and bilateral modified cortical bone trajectory screw (BMCS) in L4-L5 transforaminal lumbar interbody fusion (TLIF). METHODS:  Three finite element (FE) models of the L1-S1 lumbar spine were established according to the three human cadaveric lumbar specimens. BPS-BMCS (BPS at L4 and BMCS at L5), BMCS-BPS (BMCS at L4 and BPS at L5), BPS-BPS (BPS at L4 and L5), and BMCS-BMCS (BMCS at L4 and L5) were implanted into the L4-L5 segment of each FE model. The range of motion (ROM) of the L4-L5 segment, von Mises stress of the fixation, intervertebral cage, and rod were compared under a 400-N compressive load with 7.5 Nm moments in flexion, extension, bending, and rotation. RESULTS:  BPS-BMCS technique has the lowest ROM in extension and rotation, and BMCS-BMCS technique has the lowest ROM in flexion and lateral bending. The BMCS-BMCS technique showed maximal cage stress in flexion and lateral bending, and the BPS-BPS technique in extension and rotation. Compared to the BPS-BPS and BMCS-BMCS technique, BPS-BMCS technique presented a lower risk of screw breakage and BMCS-BPS technique presented a lower risk of rod breakage. CONCLUSION:  The results of this study support that the use of the BPS-BMCS and BMCS-BPS techniques in TLIF surgery for offering the superior stability and a lower risk of cage subsidence and instrument-related complication.
format Online
Article
Text
id pubmed-10099636
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-100996362023-04-14 Hybrid pedicle screw and modified cortical bone trajectory technique in transforaminal lumbar interbody fusion at L4-L5 segment: finite element analysis Kahaer, Alafate Zhang, Rui Wang, Yixi Luan, Haopeng Maimaiti, Abulikemu Liu, Dongshan Shi, Wenjie Zhang, Tao Guo, Hailong Rexiti, Paerhati BMC Musculoskelet Disord Research BACKGROUND: Investigate the biomechanical properties of the hybrid fixation technique with bilateral pedicle screw (BPS) and bilateral modified cortical bone trajectory screw (BMCS) in L4-L5 transforaminal lumbar interbody fusion (TLIF). METHODS:  Three finite element (FE) models of the L1-S1 lumbar spine were established according to the three human cadaveric lumbar specimens. BPS-BMCS (BPS at L4 and BMCS at L5), BMCS-BPS (BMCS at L4 and BPS at L5), BPS-BPS (BPS at L4 and L5), and BMCS-BMCS (BMCS at L4 and L5) were implanted into the L4-L5 segment of each FE model. The range of motion (ROM) of the L4-L5 segment, von Mises stress of the fixation, intervertebral cage, and rod were compared under a 400-N compressive load with 7.5 Nm moments in flexion, extension, bending, and rotation. RESULTS:  BPS-BMCS technique has the lowest ROM in extension and rotation, and BMCS-BMCS technique has the lowest ROM in flexion and lateral bending. The BMCS-BMCS technique showed maximal cage stress in flexion and lateral bending, and the BPS-BPS technique in extension and rotation. Compared to the BPS-BPS and BMCS-BMCS technique, BPS-BMCS technique presented a lower risk of screw breakage and BMCS-BPS technique presented a lower risk of rod breakage. CONCLUSION:  The results of this study support that the use of the BPS-BMCS and BMCS-BPS techniques in TLIF surgery for offering the superior stability and a lower risk of cage subsidence and instrument-related complication. BioMed Central 2023-04-13 /pmc/articles/PMC10099636/ /pubmed/37055739 http://dx.doi.org/10.1186/s12891-023-06385-y Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
spellingShingle Research
Kahaer, Alafate
Zhang, Rui
Wang, Yixi
Luan, Haopeng
Maimaiti, Abulikemu
Liu, Dongshan
Shi, Wenjie
Zhang, Tao
Guo, Hailong
Rexiti, Paerhati
Hybrid pedicle screw and modified cortical bone trajectory technique in transforaminal lumbar interbody fusion at L4-L5 segment: finite element analysis
title Hybrid pedicle screw and modified cortical bone trajectory technique in transforaminal lumbar interbody fusion at L4-L5 segment: finite element analysis
title_full Hybrid pedicle screw and modified cortical bone trajectory technique in transforaminal lumbar interbody fusion at L4-L5 segment: finite element analysis
title_fullStr Hybrid pedicle screw and modified cortical bone trajectory technique in transforaminal lumbar interbody fusion at L4-L5 segment: finite element analysis
title_full_unstemmed Hybrid pedicle screw and modified cortical bone trajectory technique in transforaminal lumbar interbody fusion at L4-L5 segment: finite element analysis
title_short Hybrid pedicle screw and modified cortical bone trajectory technique in transforaminal lumbar interbody fusion at L4-L5 segment: finite element analysis
title_sort hybrid pedicle screw and modified cortical bone trajectory technique in transforaminal lumbar interbody fusion at l4-l5 segment: finite element analysis
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10099636/
https://www.ncbi.nlm.nih.gov/pubmed/37055739
http://dx.doi.org/10.1186/s12891-023-06385-y
work_keys_str_mv AT kahaeralafate hybridpediclescrewandmodifiedcorticalbonetrajectorytechniqueintransforaminallumbarinterbodyfusionatl4l5segmentfiniteelementanalysis
AT zhangrui hybridpediclescrewandmodifiedcorticalbonetrajectorytechniqueintransforaminallumbarinterbodyfusionatl4l5segmentfiniteelementanalysis
AT wangyixi hybridpediclescrewandmodifiedcorticalbonetrajectorytechniqueintransforaminallumbarinterbodyfusionatl4l5segmentfiniteelementanalysis
AT luanhaopeng hybridpediclescrewandmodifiedcorticalbonetrajectorytechniqueintransforaminallumbarinterbodyfusionatl4l5segmentfiniteelementanalysis
AT maimaitiabulikemu hybridpediclescrewandmodifiedcorticalbonetrajectorytechniqueintransforaminallumbarinterbodyfusionatl4l5segmentfiniteelementanalysis
AT liudongshan hybridpediclescrewandmodifiedcorticalbonetrajectorytechniqueintransforaminallumbarinterbodyfusionatl4l5segmentfiniteelementanalysis
AT shiwenjie hybridpediclescrewandmodifiedcorticalbonetrajectorytechniqueintransforaminallumbarinterbodyfusionatl4l5segmentfiniteelementanalysis
AT zhangtao hybridpediclescrewandmodifiedcorticalbonetrajectorytechniqueintransforaminallumbarinterbodyfusionatl4l5segmentfiniteelementanalysis
AT guohailong hybridpediclescrewandmodifiedcorticalbonetrajectorytechniqueintransforaminallumbarinterbodyfusionatl4l5segmentfiniteelementanalysis
AT rexitipaerhati hybridpediclescrewandmodifiedcorticalbonetrajectorytechniqueintransforaminallumbarinterbodyfusionatl4l5segmentfiniteelementanalysis